CHAPTER 1

INTRODUCTION

1.1 Cloud Computing:

The resources which are needed to perform processing are available in the form of services with the help of service providers through the internet whenever the users are in the need of these computing resources such as processor time, server capability, memory, application programs, system programs, storage area etc. The virtualization logically divide these computing resources to create a pool of logically created resources which reduces the cost of investment and to increase the usage.

Generally, the cloud models are divided into two types. Deployment models and Service models. In Deployment models, we have three elementary types of clouds, Public, Private and Hybrid cloud.

In a public cloud, a business provisions the computational capability and the users have to pay for what they consume on request. The users are able to access the required computational capability from the cloud service providers, sometimes from the middle person who stays between provider and user through the internet. The main attributes of the cloud services are elasticity, scalability, ubiquitous access, dynamic provision, pay-as-you-use, on-demand service, release resources when not needed etc. Managing, maintaining, installing, updating, upgrading, releasing, providing required level protection are the main responsibilities of the service providers.

The word ‘public’ does not mean

- That it is available free of cost, some services may come free of cost and other services are not.
- That a stored data is available to everyone. The only authorized users are allowed to access and use it.

Application workloads suitable for public cloud services are:

- The workloads run for shorter period of times.
- Variable resource requirements
- The workloads that can be handled in the groups with limited protection.
• Workloads that are not involving sensitive and confidential data.
• On-line Storage solutions
• The workloads requires maintaining the multiple copies of data and recovery mechanism.
• The workloads that run separately where response time between them is not an important factor.

Application workloads not ready for Public cloud services are:
• Jobs that require more processes to run parallel in co-operation with others.
• The jobs that completes in minimum time using online transactions
• Jobs that needs to run with required amount of auditability and accountability
• The jobs that does not support virtualization to create a group of logical resources.
• The jobs where all the processing and resources required to processing has to monitored properly about the consumption to generate the bills.

Jobs that runs using confidential and sensitive data and information normally constrained to the organization are public today. Most industries are not willing to enter into a public cloud because of importance of workers data and information. Healthcare record –is another example.

Privately owned clouds are made available inside the industries protection walls and traditionally run by on-site servers. Some of the usages available in the public cloud services are also available with the privately owned services such as access the computing properties when in need, flexibly, elastically and release after the work is over. They fulfill traditional necessities for having regulator of the cloud infrastructure, refining protection and resiliency because user access and the networks used are controlled and labelled.

The facilities provided by private cloud services consumed by public cloud specifically include logically creating components, supervision and managing, allowing many users to use same resource simultaneously, Charge back and fixing the cost of usage, protection and restricting the provision of resources.

The services consuming from public cloud includes protection and Data privacy, Ease
of access, interface support, reduced price, Speed and availability.

Many experts believe that a private cloud implemented with internal hosting/running of the infrastructure makes it difficult to realize many key benefits of clouds including:

Eliminating capital expenses and operating costs: Ownership of the hardware or software eliminates the pay-per-use potential, as these must be upfront purchases. The full cost of operations must be shouldered, as there is no elasticity. If the private cloud hardware is sized for peak loads, there will be inefficient excess capacity. Otherwise, the owner faces complex procurement cycles.

Removing undifferentiated heavy lifting by offloading datacenter operations: Utility pricing usually implies an outside vendor offering the on-demand services and relies on the economies of multiple tenants sharing a larger pool of resources. These higher costs might be justified if the benefits of quicker and easier self-service provisioning and service-oriented access are large.

A Hybrid cloud is the one which is having the features of both public and private cloud. In this type, users typically gives the contract of jobs which are not so important and does not require sensitive and confidential data and processing to the public cloud, but they retain business-critical services and data in their control. This model is used by both public and private clouds concurrently, and is a transitional step in the improvement process.

It offers the good features of both the cloud worlds – the measure and suitability of a public cloud and the regulation and trustworthy of programs and infrastructure – lets them travel gracefully between the two, based on their essentials. It allows:

- Increasing or decreasing the capability of processing and the number of required resource components in a matter of minutes, without having to invest on the physical components or storage area.
- Just remunerate for the resource components which are actually consumed.
- Gradually move to the public cloud configuration, replicate an entire datacenter or move anywhere in between.

In addition, we have some more deployment type clouds:
Community cloud: It is a type of cloud which is regulated and consumed by a cluster of organizations that have same type of necessities, such as specific protection requirements or a common objective. The associates of this community usually have permissions to make use of the available resource components of processing.

Shared Private Cloud: This is shared compute capacity with variable usage based pricing to business units that are based on service offerings, accounts datacenters and it requires an internal profit center to take over or buy infrastructure made available through account consolidations.

Dedicated Private cloud: Dedicated private cloud has IT service catalogue with dynamic provisioning. It depends on standardized architectural assets that can be broadly deployed into new and existing accounts and is a lower cost model.

Cloud services will transform the IT industry. They will profoundly affect how we live and how businesses operate. This type of computing provides vastly scalable computing resource components from any location on the earth, make service provisioning very simple and easy. There are significant cost savings in implementing an internal private cloud versus a usual traditional infrastructure. With a traditional infrastructure, each server typically runs a single application and the hardware is sized to meet peak demands, which leads to very low average hardware utilization and high software costs due to number of servers that are deployed and the lack of resource sharing. The internal private cloud uses virtualization on large servers and leverages advanced service management capabilities to drive efficiency. Servers are made in the manner where the changes and end-users can request the services they need through self-service portals, which drive automation.

Significant cost savings can be achieved by leveraging these capabilities to automate test and development environments. Automation drives down IT labor cost by automatically responding to changes in the environment and taking action before problems occur. Virtualization coupled with service management greatly improves server utilization and reduce software license costs since fewer machines need licenses. Automated provisioning and standardization allows systems to be provisioned in minutes by scripting the install process. In addition, end-users can now interface with IT through self-service portals to request services much like ATMs are leveraged to improve banking service.
Commoditization in Cloud Computing:

When trades started looking improvement of IT, the primary organizations to automate their business processes had substantial advantages over their opponents. As the information technology field developed, the primary viable benefits of computerization cut down. Computerization then became a prerequisite just to halt on a level playing field. In quintessence, there is an accumulative amount of information technology that operates as a product or service or good.

IT functions should be evaluated, and a determination made as to which is ‘commodity’ and which is not. Then determine where to place that function in the IT organization?

The cloud infrastructure has to be made highly available at all the time and waged for open in private clouds. Users pay for resource components as consumed, permitting for capacity instabilities overtime. Self-service provisioning of infrastructure set-up capability is only possible to an opinion in private clouds. Customary capacity planning and procuring processes are required for key escalations. For a bulky, enterprise wide solution, some cost savings are possible from providers economies of scale. The enterprise sustains on-going functioning costs for the cloud, and the service provider may offer all type of readily available services. Service Level Agreements and predetermined terms and conditions are adjustable between the cloud vendors and customers to satisfy essentials. All data and protected information remains behind the protection. Private clouds are flexible, depends on companies requirements can be planned for precise OSes, applications and use cases, exclusive to the business.

We have three basic types of clouds in service model types, Infrastructure as a service (IaaS), Platform as a service (PaaS) and Software as a service (SaaS). IaaS is the basement, above that PaaS will run and above that SaaS will run. Hypervisor acts as very important component in both these models in creation of logical versions of existing physical resources. Cloud computing becomes a different type of computing capability, which acts an important player in both IT companies and academics. To allow facilities available in cloud computing, it entails some hopeful practices such as Service Oriented Architecture (SOA), Service Oriented Modelling and Architecture (SOMA) and other...
exposed architectural designs to cultivate the cloud applications that are platform free, handy and simply operable. The main drawback of this type of computing is the ability to provide requisite level of protection to data and information as well as the resource components which are delivered to the users site. Protection is the main issue here with respect to both physical and logical components.

Hypervisor enables facilitation of components based on consumer needs and large number of consumers use to share those components, this aids cloud computing to ensure the feature of multi-tenancy, there by cuts the price of consuming those resources. The presently available protection mechanisms may not fulfill the needs of required level of security in cloud computing. Here our main objective is to come out of the problems of virtualization safety, weaknesses, effect of virtualization on cloud business and propose many different methods to come out of these problems.

1.2 Virtualization:

Virtualization is the way in which detachment of the consistent resources from physical resources happened to satisfy the different solicitations originating from numerous clients. For instance, by utilizing legitimate memory, the procedures can allot more memory than accessible physical memory with the assistance of trading the information and data from primary to auxiliary and the other way around, Though the physical resources are parcelled and dispensed to various clients, every client has a vibe that they have their own resource and work like as though they work with physical resource. This strategy is likewise work with different layers of resources such as systems, server, desktop, platform, application and so on.,

Why Virtualization?

1. Lower the cost of existing infrastructure by reducing the charges required to run cloud business by maintaining required number of logical instances.

2. Reduce the complexity of adding to that infrastructure.

3. Gather information and collaboration across the organization to increase both the utilization of information and its effective use.
4. Reduce the number of physical servers and therefore the ongoing procurement, maintenance and ongoing operational costs.

5. Provides a flexible foundation to provide capacity on demand for the organization. We can quickly deploy new servers and therefore services in minutes as it is easy to ship infrastructure when we deploy it using virtualization techniques.

6. More efficient and cost-effective disaster recovery solution can be realized with virtualization technologies. Bring the servers and business on-line at an alternate site within minutes using virtualization.

7. It introduces a shared computing model to enterprise as it is easy to understand the infrastructure requirements in virtualized environment and there is no need to implement it physically.

Being able to implement solid information management solutions in the organization does not mean that we have to change the whole IT environment in one key re-engineering mission. There is a different method that we see most successful companies follow. Some people may focus more on automation capabilities, other may focus more on virtualization, but it is the breadth of capabilities across the spectrum of information management that truly unlocks the value of the IT infrastructure.

The first steps in the practice are to make simpler our environs by fusing like systems platforms onto fewer, more controllable resource components. For the past decade, this has been one of the primary ways companies seek to reduce costs and increase utilization.
Once we have brought like systems together into a more efficient structure, we can start to automate the management of those resources, adding and moving capacity as needed. Allowing business wants to drive resource components usage rather than resources ordering how well the trade does.

Automating the things such as adding or reducing capacity can lead to advancement of task automation all allied with a given process or sub-process, such as application testing or release management of an updated production configuration. Another key activity at this point is to start fetching organized these united resource components through functions within the company. By doing this, an organization can utilize assets that may sit out of gear at different circumstances of the day to perform undertakings that are overburdened at those same circumstances. The capacity to share these assets in a consistent manner gives organizations the capacity to rapidly react to changing business needs without over putting resources into innovation.

In order to use these resources most effectively, companies cannot allow the standard process that may be in place today to slow down the adaptation of resources to new workloads. To facilitate the fluid environment, we need tools and processes that allow the automated orchestration of resources to respond to those business challenges. As virtualization and automation capabilities improve within an organization, we see companies being able to move to enterprise-wide virtualization that is enabled by a global virtualization fabric. This fabric utilizes advanced virtualization techniques available through grid technologies and more advance mainframe virtualization platforms to allow seamless access to resources wherever they exist within the organization. It starts to dispose of limits between resources that have been made by hierarchical datacenters or administration forms.

To end, we see organizations using these advanced virtualization concepts not only to access resources within their organization, but being able to truly see resources on demand; whether they are within the company or outside at partner or vendor locations. In this state, resource components are present when needed, uttermost loads can be tuned without keeping unused capacity on the floor for extended periods of time, and information flows seamlessly between organizational functions, both within and outside the company.
One of the most critical ingredients for successful enterprise-wide and inter-enterprise resource sharing, application integration, and business process collaboration is security management. Fundamentals such as authentication, authorization and access must be in place across systems, networks and applications. Establishing roles and using identity management will save time and money in the long run, and tighten security immediately. Having the right solutions providers for security and verification between our suppliers, partners and customers will help us to get to that ‘always on’ state. All of these infrastructure management techniques are available today, but many companies find it difficult to implement them as rapidly as they would like due to outdated IT governance and management processes. Because of that, companies must address those processes and cultures that hold them back from taking full advantage of the technologies available today.

1.3 Hypervisor:

It is a small program, whose objective is to produce virtual resource components from the available standing physical components. Hypervisor is the foundation for virtualization on server, enabling hardware to be logically divided into multiple logical panels and confirming isolation among them. For an instance, multiple logical instances can be formed by one actual physical machine. When once the instances are formed, then the duty of the virtual machine manager is to control, co-ordinate, allocating the resources required, de-allocating the resources after the work is over. It is in the position of allocating the resources such as processor time, storage, server capacity etc., needed by the instances to allow them work according to user needs. The very significant thing is, the formation of required number logical instances based on the available size of the physical resource. There are two sorts of hypervisors, Type-I and Type-II hypervisors. Type-I is also called as Bare-metal or Native hypervisor, Type-II is likewise called as Hosted hypervisor. Virtual machines are called as Guest machines and physical machines are called as Host machines. The Operating system running in virtual machines are called as Guest OSes and OSes running in physical machines are called as Host OSes. Type-I hypervisor specifically keeps running on the physical component yet Type-II hypervisor keeps running on host OS. Type-I has coordinate control of equipment while Type-II needs to associate with equipment by means of host OS. Bare metal hypervisor utilizes abnormal state asset administration approaches to register an objective memory.
assignment for each virtual machine in view of the present foundation load and parameter settings for each of the virtual machines.

Hypervisor also supports Ethernet transport mechanism and Ethernet switch which are needed for virtual local area network (VLAN) capability. VLAN allows secure communication between logical partitions without using any physical Ethernet adapter. Hypervisor supports Virtual SCSI (Small Computer System Interface) to provide support for virtual storage.

Hypervisor is a global firmware image located outside the partition memory in the first physical memory block at physical address zero. Hypervisor takes control as soon as the system is powered on and gathers information about memory, processing power, I/O and other resources that are available to the system. Hypervisor owns and controls all the mentioned resources and other resources that are global to the system. Hypervisor performs virtual memory management using a global partition page table and manages any attempt by a partition to access outside its allocated limit. The complete physical memory is divided into blocks called physical memory blocks (PMBs). The logical memory is divided into logical memory blocks (LMBs). PMBs are mapped to LMBs. The hypervisor has access to entire memory space and maintains memory allocation to partitions through a global partition page table. Partitioning of the service is the way of updating the hypervisor, which is a processor-based firmware. It is the nerve center of the virtualization.
Virtualization Security for Cloud Computing Services

engine. This handles micro-partitioning of the processing power and the memory pool.

Virtual infrastructure requirements:

Virtualization products have strict requirements on other-end setup components, including storage, network, backup, systems management, safety and phase sync. Ensuring that these existing components are of a supported configuration is critical to the success of the implementation. During this engagement, an IT architect assessments and documents the present environs, and where applicable, make endorsements on changes required to optimize the infrastructure. Where applicable, enterprise tools are used to get a perfect accepting of the environs and the configuration and consumption of various systems. A virtualization sizing tool is then used to precisely estimate the size of a latent virtualization platform.

One of the key advantages of virtualization is better consumption of physical server resource components. Reaching this advantage must not be at the cost of service to the business. It is vital to guarantee that the virtualization host server is sized such that it can deliver acceptable levels of service to all the guests.

To guarantee that current servers work in a common situation, nitty gritty equipment stock and execution use data must be gotten, and extrapolated and broke down for reasonableness and host server estimating. Toward the culmination of the accumulation stage, the planner assesses the outcomes and gives archived proposals on virtualization appropriateness over the server competitors.

Virtualization introduces many changes into the environment, and ensuring that the platform co-exists and interacts with the existing infrastructure is the key to a successful implementation. The purpose of the design is to set identification and safety standards, define the disk and network structure, document any required system tuning elements and produce a virtual infrastructure design capable of meeting our specific requirements for a virtualized server environment.

Virtualization design document should include the following:

- Security and administration model
• Technique required to maintain multiple copies of same data

• Actual physical and virtual disk draft, precisely around the system structure, and commitment of disks to guests where applicable.

• Virtual network topology structure/format and inter-connection with the physical network.

• Virtualization facility console pattern

• Virtualization kernel device share aspect pattern

• Actual server hardware specifications

• Virtualization management server configuration, including database and directory service component incorporation.

• Virtual machine distribution amongst hosts

• Practices and techniques for continuing supervision

• Implementation tables and configuration settings.

To virtualize the systems, we detach the physical from logical, we manage and consume IT resources as an interrelated, complete unit that is persistently regulating, re-allocating and reacting as changes in the trade environment dictate. Virtualization is a liberating technology, we have better, more responsive access to information. We can further simplify IT management by instituting policy-based response, and ultimately we reduce the cost of operations.

The unique features of hypervisor on bare metal enable the hardware to be used effectively. There are various memory optimization techniques that will make the hardware to over-commit on the available resources and also efficiently give high availability to the virtual machines running on the host servers. The power saving features also enable the datacenters to go green and also save energy by powering off the servers. This is done automatically as per the load of the infrastructure environment. The servers would be automatically brought up and running when there is a requirement for more computing resource for processing the load on the infrastructure. Bare metal hypervisor
consumes unusual state asset supervision approaches to process an objective memory task for each virtual machine in light of the current framework load and parameter settings for each of the virtual machines. The processed target assignment is utilized to direct the dynamic change of the memory portion for each virtual machine in the framework. In the situations where memory is over-dedicated, the objective portions are still accomplished by summoning a few lower level instruments to recover memory from virtual machines.

Administration: To administer the virtualized datacenter activities a single console application is required. Using the centralized management software, virtual management server centrally manages bare metal hypervisor environments allowing IT administrator’s centralized control over the virtual environment. Administrators can provision virtual machines and hosts using standardized templates and ensure compliance with hypervisor host configurations and host and virtual machine patch levels with automated remediation.

This administration software constantly monitors the virtualized datacenter. Also it would allocate the necessary computing resources and de-provision them as and when required. For load balancing, this administration application would also do a dynamic movement of the virtual machine servers from one bare-metal hypervisor server to another without any disruption in the services offered by that respective server.

The following are the new initiatives that are active in the industry:

Virtual CPU and Memory: Physical CPUs and RAM can be dedicated or dynamically allocated to virtual machines. As there is no OS dependency to physical hardware, with CPU checking off, virtual machines can be seamlessly migrated to different hosts with the background changes to physical CPU and memory resources being transparent to the guest OSes running on the virtual machines.

Virtual Networking: This produces a virtual “network in a box” solution that allows the hypervisor to manage virtual machine network traffic through the physical NICs and allow each of the virtual machines to have a unique identity on the network from the physical host.

Virtual Disk: SAN-based storage is presented as storage targets to the physical host, which in turn, are then used to host the virtual machines vdisks.
Consolidated Management: Performance and Health of the virtual machines and guest OSes can be monitored and console access to all of the servers can be accessed via a single console.

Virtual Motion: Active virtual machines can be seamlessly and transparently migrated across physical hosts with no downtime and no loss of service availability or performance. The virtual machine’s execution state, active memory, network individuality and active network connections are conserved across the source and destination hosts so that the guest OS and running applications are unaware of the migration.

Storage Virtual Motion: The vdisks of active virtual machines can be seamlessly and transparently migrated across data stores while the execution state, active memory, and active network connections remain on the same physical host.

Dynamic Load-Balancing: Dynamically load balances virtual machines across the most optimal physical hosts to ensure that pre-defined performance levels are met. Virtual machines can be automatically and seamlessly migrated to a less busy host if a particular host in a resource pool is in a high utilization state. Different resource pools can be defined for different business needs. For instance, production pools can be defined with more stringent service level requirements while development pools can used more relaxed service levels.

Logical Partitions (LPARs): Hardware layer logical partitioning to create two or more isolated computing domains; each with its own CPU, memory address space and I/O interfaces and each capable of housing a separate operating system environment, on a single physical server. LPARs can share CPUs or have dedicated physical CPUs. Likewise, an LPAR can be dedicated physical memory address space or memory addresses can be dynamically allocated among LPARs as needed.

Logical Domains (LDOMs): The Operating systems running in each logical domain can be independently managed, that is, stopped, started and rebooted, without impacting other LDOMs running on the host. A Type 1 ‘bare-metal’ hypervisor isolates computing environments from physical resources, notably, the separation of domain across distinct threads using the multi-threading technology because the hypervisor is dynamically managing and encapsulating the allocation of physical resources.
Zones: Zone is an OS-level virtualization solution rather than a hardware-level hypervisor solution. Each zone is an encapsulated virtual server environment running within a single operating system instance. As such, zones share a common kernel, through a global zone, although ‘non-native’ zones can emulate an OS environment other than that of the host’s native OS. Zones allow for virtualization across a single physical server platform, but some applications may still be limited in their ability to run within zones if they require direct manipulation of the kernel or it’s memory space (since the kernel is shared across zones) or if the application requires privileges that cannot be granted within a non-global zone.

The following section describes the virtualization functionalities that can be used for the datacenter applications and how the virtualization improves the functionality in any datacenter environment.

Availability of Machines:

This feature makes the machines in the virtualized datacenter as High available. This would ensure that multiple datacenter activities are carried out even on the event of Hardware failures. This feature should be configured and used for all the virtual machines in virtual environment, as during hardware failure, the running virtual machines are started on another host machine and the downtime is reduced to minimal. If a situation arises where server is not functioning, then the affected virtual machines are re-started on other production servers that have extra capability. In datacenter, this feature would give high availability to the virtual machines by starting them on other servers and thus minimizing the impact on failures.

Using the bare-metal hypervisor makes it modest and not as much of costly to provide higher levels of readiness for vital uses. Utilizing hypervisor, the servers in the framework can without much of a stretch increment the standard level of accessibility accommodated all applications, and additionally give more elevated amounts of accessibility all the more effortlessly and cost viably.

By actualizing the High Availability (HA) include for any datacenter, it is conceivable to diminish both arranged and impromptu downtime. High accessibility, a component of Bare metal hypervisor, particularly diminishes spontaneous downtime by utilizing
different hypervisor servers arranged as a bunch to give quick recuperation from blackouts and in addition financially savvy high accessibility for applications running in virtual machines.

Dissimilar to other grouping arrangements, high accessibility gives the framework to ensure all workload inside the bunch. There is no compelling reason to introduce extra programming inside the application or virtual machine. High accessibility secures all workloads that are in the framework. After high accessibility is designed, no activities are required to ensure new virtual machines. They are naturally secured.

The following are the advantages when we configure the high availability compared to traditional fail-over solutions:

- Minimal setup
- Reduced Complexity
- Reduction in hardware price and arrangement

The datacenter can be supported with load balance feature as it is virtualized with bare-metal hypervisor. The move made by high accessibility for virtual machines running on a host when the host has lost its capacity to speak with different has over the administration arrange and can't ping the disengagement addresses is called host isolation response. The word have segregation does not really imply that the virtual machine organize is down, however just that the administration arrange and conceivably others, is down. On the off chance that server checking is in handicapped mode, restart of virtual machine in that server is additionally incapacitated on different hosts following a host disappointment or arrangement. Basically, a server will dependably play out the customized server seclusion reaction when it distinguishes that it is secluded. The server observing setting decides if virtual machines will be restarted in different servers in a similar group following this occasion.

Fault Tolerance:

Dynamic movement of virtual machines in the virtualized datacenter use the notable exemplification properties of virtualization by building high accessibility straightforwardly into the bare metal hypervisor keeping in mind the end goal to convey
equipment style adaptation to non-critical failure to virtual machines. This feature is to be used for all the virtual machines that require 100% uptime.

Dynamic Movement:

Dynamic movement of virtual machines in the virtualized datacenter machines could give more options to do load balancing and hardware maintenance. Usage of this feature does not have any impact on the services offered by the virtual machine. This functionality is used to Distributed Resource Scheduling algorithm. Virtual dynamic movement empowers the ability of live relocation of running virtual machines starting with one physical server then onto the next with zero down time, consistent administration accessibility and finish exchange trustworthiness. Capacity dynamic development empowers the relocation of virtual machine records starting with one information store then onto the next without benefit intrusion. One can put the virtual machine and every one of its circles in a solitary area, or select separate areas for the virtual machine setup record and each virtual plate. The virtual machine stays on a similar host amid capacity dynamic development.

This could be accomplished utilizing Distributed Power Management calculation which will diminish vitality utilization in the datacenter by improving workload position for low power utilization with disseminated control administration. It combines workload when disseminated asset groups require less assets and powers off host servers to ration vitality. At the point when asset prerequisites increment, dispersed power administration calculation brings has back online to guarantee that administration levels are met.

In any datacenter, this feature would be effectively used, while provisioning the machines on demand. Distributed power management algorithm would also use this feature to save energy during the off peak hours. Relocation with dynamic movement helps moving of a controlled on virtual machine to another host. Relocation with dynamic movement enables moving a virtual machine to another host with no interference in the accessibility of the virtual machine. Relocation with dynamic movement can't be utilized to move virtual machines starting with one datacenter then onto the next.

Dynamic Storage:
Dynamic movement of virtual machines along with the virtual hard disks in any
datacenter machines could give more options to do load balancing and hardware
maintenance of storage devices. This feature allows administrators to travel the virtual
disks or configuration file of a powered-on virtual machine to a novel data store.
Relocation with storage dynamic movement allows moving a virtual machine’s storage
without any disturbance in the availability of the virtual machine. Usage of this feature
does not have any impact on the virtual machine.

Resource Scheduler:

In the virtualized datacenter, the presence of a resource scheduler algorithm would
improve resource allocation, efficiency and power consumption in virtual infrastructures.
Resource scheduler balances workloads according to available resources, and users can
configure Distributed Resource Scheduler algorithms for manual or automatic control. If a
workload’s needs decrease drastically, distributed resource scheduler can temporarily
power down unnecessary physical servers.

Resource scheduler works with virtual dynamic movement to give mechanized asset
improvement and virtual machine arrangement and relocation, to assist adjust accessible
resources to pre-characterized business needs while augmenting equipment use. Conveyed
asset planning calculation streamlines the activity of dealing with new applications and
including new virtual machines, improves the assignment of separating or evacuating
equipment when it is never again required, or supplanting more seasoned host machines
with more current and bigger limit equipment. Including new assets is likewise straight
forward, as one can just move new physical hosts into a cluster.

A distributed resource scheduler cluster is a gathering of physical bare metal hypervisor
introduced servers and related virtual machines with shared resources. When some
individual adds a host to an resource scheduler group, the host's resources turned into the
piece of the cluster's resources. Notwithstanding this conglomeration of resources, with a
conveyed resource scheduler cluster can bolster group wide resource pools and uphold
group level resource allotment strategies permitting to progressively arrangement figure
resources to take care of the demand in an effective way while holding the SLAs.
Distributed resource scheduler algorithm aids placement of virtual machines in the cluster on any of the host automatically, and also makes instinctive resource rearrangement and optimization decisions as hosts or virtual machines are supplemented or detached from the cluster. Distributed resource scheduler algorithms can also be designed for manual control, in which case it only makes approvals that can be reviewed and carried out. The distributed resource scheduler and dynamic movement integration combination would make the infrastructure a redundant one and thus minimize the impact in an event of failure.

Power Management:

Usage of a power management options in virtualized environment would significantly improve efficiency, thereby reducing the power consumption for virtual infrastructures. Power management application balance workloads according to available resources and users can configure this feature along with resource scheduler. If a workload’s needs decrease drastically, scheduling algorithms can temporarily power down unnecessary physical servers using distributed power management algorithms. These servers are brought back online automatically when there is a requirement for more compute resources.

Provisioning and De-Provisioning:

Any datacenter infrastructure can be virtualized and the option of provisioning comes along with it for creating a virtual machine. The modest reason for consuming virtual machine prototypes is adeptness. By using the prototypes, many monotonous fixing and configuration jobs can be shunned. It is to be noted that a datacenter can utilize the capabilities of hypervisor and virtual management server for the automatic provisioning and de-provisioning functionality by making the infrastructure virtualized. The option of provisioning comes along with it for creating a virtual machine. The outcome is a completely mounted, prepared to work virtual machine in less time than that required for physical fixing with all the features and configurations as the source machine. On-demand provisioning of the resources for de-duplication process and provisioning more servers require resources on demand basis. Also hypervisor should be able to scale up and down the infrastructure as per demand.
Moreover hypervisor should also be able to detect new hardware such as server, storage, etc. that are being introduced into the existing infrastructure. It should also maintain the balance of the resources in the cluster. High availability of the machines that are hosted in the virtual infrastructure should also be guaranteed.

Dynamic Allocation and De-Allocation:

Virtualized datacenter is scalable and capable of using the existing resources in an efficient way. This is achieved with the bare-metal hypervisor that is installed on the servers in the datacenter. This environment will not be only scalable but intelligent enough to understand the load on the datacenter and allocate the computing resources accordingly. This would save significant amount of energy and will also be able to use the existing computing resources in the datacenter effectively. During the off peak hours, similarly lots of computing power would be in unusable state. The distributed power management algorithm with the help of Distributed resource scheduler algorithm would identify the less resource consumed servers. Using dynamic movement the virtual machines running in that server would be moved dynamically to the other servers. Then the server is moved to power off state by communicating through the remote console. These servers are brought online as and when the requirement for the computing resources arises. This would save a significant amount of energy in terms of power and computing resource, this enabling a go green datacenter.

The load balancing is being done efficiently for the peak hours and non-peak hours. The bare-metal hypervisor is the one that makes the available computing resources to be used effectively and efficiently. Templates can be a time-saving feature for virtualization administrators as they allow cloning, converting and deploying virtual machines. A template is a brilliant duplicate of a virtual machine sorted out by envelopes and dealt with consents. They are valuable since they go about as an ensured rendition of a model virtual machine which can be utilized to make new virtual machines. As a template is the first and ideal picture of a specific virtual machine, it can't be controlled on or run.

By using distributed power management algorithm along with the distributed resource scheduler, the multiple datacenters could be optimized of power usage by moving the unused physical machines to standby mode. The challenge here could be to understand which physical machine needs to be turned off. Resource scheduler algorithm should have
the ability to understand that free and used resource capacity in a cluster. Using algorithm it will move the virtual machines running on one physical host to another to make one physical host completely offline. This is done automatically and dynamically by resource scheduler algorithm, as there is no service loss to the end user. This feature also allows an administrator to define the rules and policies according to the priority which decides how each virtual machine should share resources and how the available resources are ranked between several virtual machines. It also sends the heartbeat signal to all the hosts to ensure that it is up and running fine. So this feature is capable of dynamically provision, resource quickly as and when needed when resources are free in the cluster.

Server Virtualization:

It covers different types of virtualization such as client, storage and network virtualization. Server virtualization is the concealing of server resources, including the number and character of individual physical servers, processors and OSes from server clients. The server executive uses a product application to separate one physical server into different disconnected virtual environments. The virtual environments provide an abstraction of a complete, independent server to the server users.

Virtual Machine:

This is often called virtualization environment, virtualized environment, partition or container. A virtual machine is a server environs that does not actually occur but is formed within one more server. In this situation, a virtual machine is called a ‘Guest’ while the environs it runs is called a ‘Host’. One host environs can usually run several virtual machines at on one occasion. Because virtual machines are disjointed from the physical resources they use, the host environment is frequently able to dynamically allocate those resources among them.

A consumer intermingling with a virtual machine can sight it as a physical machine, in the logic that the user would see access to an operating system and machine resources like processing power, memory, hard disk and network. For instance, a hypervisor virtualizes a server with architecture into multiple virtual machines. Each virtual machine is a virtualized server with its assigned system resources and an operating system.

Virtualization Technologies:
Two major types of technology are employed in server virtualization: hardware virtualization and operating system virtualization. Hardware virtualization virtualizes the server hardware, and operating system virtualization virtualizes the application environment (for example, file systems).

Hardware Virtualization:

Hardware virtualization is also known as Hypervisor-based virtualization, Bare-metal Hypervisor, Type-I virtualization or simply Hypervisor. This virtualization technology has a virtualization layer running immediately on the hardware, which splits the server machine into some virtual machines or panels with a guest operating system running in each of the machines which is shown below.

This virtualization approach gives parallel straightforwardness in light of the fact that the virtualization environment items themselves give straightforwardness to the working frameworks, applications and middleware that work above them.

Operating System Virtualization:

This type of server virtualization is also known as Operating System based virtualization, Operating system level virtualization or Type-II virtualization. This virtualization creates virtualization environments within a lone instance of an operating system. The virtual environments created by operating system virtualization are often called containers.

Since all virtualization situations must share resources of a solitary OS while having a private virtual working framework condition, a specific execution of the innovation may modify record framework introduction and regularly acquaint get to limitations with worldwide framework arrangement or settings.

Virtualization on processors encounters a set of challenges that the virtualization on RISC processors does not have. This is mainly because the vendors or technology providers for processors, systems, virtualization technologies and operating systems are different and operate independently. As a result, the virtualization technologies and the rest of the system are available separately and on different timeliness rather than as a
single integrated unit. Therefore, both forward and backward compatibilities must be considered when designing virtualization for the processors.

Most OSes are intended to run specifically on the bare metal equipment, so they normally accept that they completely ‘own’ the computer hardware. The processors design offers four levels of benefits known as Ring 0, 1, 2 and 3 to OSes and applications to oversee access to the computer hardware. While client level applications ordinarily keep running in ring 3, the OS needs guide access to the memory and equipment and must execute its special directions in ring 0.

1.4 Role of Virtualization in Cloud Computing Services:

Virtualization has been there for around several years, we can't anticipate that cloud will deliver what a cloud is required to create in the event that it isn't virtualized, on the grounds that the general population expect adaptable assets. In a cloud domain, individuals expect self-benefit, having the capacity to begin rapidly, self-provisioning or fast provisioning. Those things basically request that we do have these vital essentials set up.

The better mode to get efficiency is by using Virtualization technique. And that is going to cut down the investments and provides shared services to fulfil the requirements of multiple customers (Cloud services users) simultaneously. This is really an amazing technique and we are seeing IT companies that are doing this reach very real quantifiable trade outcomes. If the virtualization is not used in cloud services, we cannot imagine the cloud computing service concept, because in the absence of virtualization the Cloud service provider has to invest a lot on the physical computing resources. When more number of customers comes to access the cloud resources, it is very difficult to fulfil the needs of all customers simultaneously. And the cloud services are scalable in nature, when the customers requests for some more resources to continue their business or work or to improve their business, again the cloud service provider has to invest on the resources. When we have more number of physical resources to satisfy multiple requests, obviously the maintenance and management, allocation of the resources, de-allocation of resources, updation, up gradation becomes the important issue with respect to cloud resources. To overcome these issues we have Virtualization concept. By using virtualization, we can reduce the investment on physical computing resources like computing power, server,
memory, infrastructure, software etc. When we have minimum number of physical computing resources we can get required number of logical or virtual resources by using virtualization. This is one of the greatest advantages. Next is management and maintenance of cloud resources becomes easier, because we have less number of physical resources. Updation and upgradation is also becomes easier. This is the reason why we can say that “Virtualization” is the key player of Cloud services.

1.5 Risks in Cloud services and Virtualization:

The device where the Hypervisor is running is the one, who goes about as focal control point to allocate the resources to the virtual instances made before handling begins and de-dispensing similar resources from those occurrences after the processing is finished, there by discharging the virtual instances. Since it is in the position of making, assigning and de-dispensing of resources, it might be defenseless against assaults. The Virtual Machine Monitor(VMM) become the weak point. The virtual instances of some other physical machine may try to get the resources from this VMM and it may try to inject the attacks to the virtual environment by breaching the security measures.

Protection: Service on demand and Dynamic flexibility are two essential qualities of cloud computing. At the point when there is a demand from clients for IT resources, the same must be provisioned by the cloud specialist co-ops without come up short. These resources are furnished with some level of security systems, at whatever point the client's solicitations for the resources which are not quite the same as past solicitations, the assurance components must distinguish these adjustments in the solicitations and private the cloud specialist organizations and attempt to give the required level protection to changed solicitations. These solicitations progressively changes as indicated by the requirements of the clients. As cloud computing picking up significance step by step, the quality and level of administration and protection ought to be expanded with the goal that the client securely and safely utilize resources which may prompt increment in the cloud business and assist suppliers to include in executing abnormal state of assurance and security frameworks with satisfying more clients. It is considered as the foremost problem of the cloud computing.

Resource readiness: It is one benefit encouraged by the idea of virtualization. It additionally tracks and use the resource pool under a similar umbrella of resource units.
Accessibility isn't only an innovation issue, it is a business issue also. When it is working, you don't have any acquaintance with it is there, so it is simple for administration to accept it generally will be. Accomplishing abnormal state of asset accessibility as a rule requires considerable speculation by the cloud proprietors on foundation and different resources and virtualization idea to make sensible resources with satisfactory security components to ensure both physical and consistent resources.

Authorised users and accesses: The authorised clients have a larger number of rights than the normal clients. The odds of infusing the assaults and including in risky access to the resources are typically more with the authorised clients just, on the grounds that the normal clients are generally maintained a strategic distance from at the fundamental level of security along these lines dodging the genuine assaults at the underlying stage itself. The fundamental issue is distinguishing the authorised clients who are including in hazardous exercises, since they have approval to get to the assets and go into the virtual condition and effectively include in such exercises, which is one of the primary issue.

Veracious data: Originality of data and information is very important. If the original data is not received by the receiver, it is of no use. It is very much necessary to maintain and retain the original data without contamination and corruption. During the transmission of data over the internet, to or from the storage devices or servers, it may be affected by attackers or intruders because internet is open to all and nobody owns it. The restricted users can contaminate and inject the attacks to the original data so that the destination may not receive the data in original form. If such corrupted data is used in IT companies to run their business and to take the important decisions, then the business will be affected negatively.

Amenity Privacy: The cloud service users demands for the required resources, for example, virtual products, applications, infrastructures, platforms or capacity from the cloud specialist co-ops. In this situation the client needs to interface with the cloud specialist organization and their cloud administrations. Amid this collaboration, trade of information and private data concerning cloud administrations will be happened utilizing system exchanges. In this circumstance, it is important to keep up clients data and their status securely and safely. The limited clients can endeavor to hack client's private data. This may make major issues to clients. Furthermore, when numerous clients are sharing
the normal resources among them, it is important to maintain a strategic distance from every client from utilizing or knowing the utilization or status of different clients to keep away from the issues.

Migrating VMs: For the most part the virtual machines or cases which are made from the physical machines are accessible as documents. These files can travel between various physical machines. Amid this movement of instances, they may helpless against assaults and issues. When they influenced by the malwares or infections they can make the issues to other virtual instances and furthermore to physical machines by changing their settings, configurations and corrupting the documents and folders of other virtual instances. This may tend spillage of information and data and thus virtual instances may carry on disgracefully. At times this may make the issues to the working frameworks running in physical machines. At the point when these physical machine's OSes are defiled, these tainted OSes can make the issues to virtual instances. They may not allocate the expected resources to the virtual instances, or they may de-designate the resources from the virtual instances right on time before they finish the handling. It is the obligation of OS to allocate and de-allocate the resources required by the virtual instances after their creation. This is likewise one of the significant issue.

Service Level Agreement: It is the understanding or contract made between cloud specialist co-op and service user before resources are provisioned to the client after their demand. It assumes imperative part in cloud benefit business. It is extremely fundamental to influence the cloud to benefit business conceivable. It characterizes the level of administration accessibility, reaction time, how solid the resource segments are, obligations of both client and administration client and different guarantees regarding administration parts. It indicates how the administration client needs to use the resources without violating the SLA by keeping up the resources in the best possible condition and determines how the specialist organization needs to arrange the resources to the client, nature of administrations, replacement of resources when something happens, keeping up the uptime and reinforcements, giving the nature of administration, reducing the response times and so on. Tailoring the different SLA for every client is one of the greatest issue of cloud service business. At the point when virtual instances made from physical machines, typically extraordinary OSes are introduced on virtual instances to make them to run perfect applications. After formation of instances, overseeing, keeping up and giving
protection to those examples is the monotonous errand. Since they have diverse OSes and applications running, it ought to be said in assertion with the goal that both specialist organization's and administration client's duty in dealing with cases or virtual machines. The supplier should conveniently arrange and settings ought to be made to those cases and append security instruments. The administration client must keep up this virtual instance by appropriate dealing with legitimate updates and good fixes which are gotten from service provider. Because of this, we need to tailor a different SLA for each client is the dreary assignment.

Also, virtual instances which are made from same physical machine must be confined appropriately to influence them to run freely to process by running the good applications with no reliance. However, once in a while it is conceivable that the virtual instances that are malevolent, may assault neighbor occurrences or disturb their ordinary schedules by taking the resources from them or by defiling the information required to process by them or by infusing the malwares to the guest OSes with the goal that the guest OSes ought not work appropriately to deal with the handling required by the clients. This prompts the significant issue to the virtual machine resources, for example, arrange transmission capacity, storage, processing power that are shared among numerous clients. This is one more circumstance where Service Level Agreement needs to characterize the obvious disconnection arrangements among the virtual instances made from the same physical machine, which is a difficult issue.

1.6 MOTIVATION

The technologies and concepts used in Cloud services have not reached their full impending and several of the abilities have not so far been established and researched to a level that lets their manipulation to a full grade. Virtualization plays very important role in cloud computing. We really cannot expect good business (from cloud service providers point of view) and good services (from cloud service users point of view) from the cloud. The cloud can produce very good results only when it is virtualized, standardized and automated, because people expect scalable resources. The only way we are going to be able to acquire competence is by virtualizing, standardizing and automating. And that’s going to drive down expenditures and improve service. This is surely appealing modest
balance and we are seeing organizations that are doing this attain very actual quantifiable trade outcomes. Nowadays creating the logical instances at all stages (system, storage and network) turn into significant as a mode to progress system protection, trustworthiness and readiness, cut prices and offer greater elasticity. We need to report the desires and elucidations for the security of Virtualization in cloud computing environment. Providing security to the virtualization is always a challenging task whether it is a simple computing environment or a complex computing environment. That too, in an environment like cloud which includes heterogeneous clouds like Public clouds, Private clouds, Hybrid clouds, it becomes much more challenging since cloud computing services are heterogeneous in nature.