List of Figures

1.1 The Standard Model of elementary particles ................................ 2
1.2 Various measurements of $\alpha_s$ ($Q$) as a function of the respective energy scale $Q$ [4] ................................................................. 4
1.3 Energy density (full curve) and pressure (dashed curve) as a function of temperature from lattice calculations [5]. The arrow indicates the Stefan-Boltzmann limit of the energy density ........................................ 7
1.4 Schematic phase-diagram of QCD matter ........................................ 8
1.5 An illustration of two nuclei collision .............................................. 12
1.6 A schematic view of the total charged particle multiplicities and their use to infer the event centrality [15] .............................................. 13
1.7 Schematic diagram representing the different stages of a heavy-ion collision. 14
1.8 Schematic diagram for jet expectation from p+p and Au+Au collisions. . 17
1.9 $R_{AB}(p_T)$ for minimum bias and central d+Au collisions, and central Au+Au collisions. The bands show the normalization uncertainties, which are highly correlated point-to-point and between the two d+Au collisions. . . 18
1.10 Dihadron azimuthal correlations in p+p, central d+Au and central Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV collisions measured by STAR Experiment. [27] 18
1.11 Upper panel: The ratio of the yields of K, $\phi$, $\Lambda$ and $\Xi + \bar{\Xi}$ normalized to $\langle N_{\text{part}} \rangle$ in Au+Au and Cu+Cu collisions to corresponding yields in inelastic p+p collisions as a function of $\langle N_{\text{part}} \rangle$ at $\sqrt{s_{NN}} = 200$ GeV. Lower panel: Same as above but for only mesons in Au+Au and Cu+Cu collisions at $\sqrt{s_{NN}} = 200$ and 62.4 GeV [29]. The error bars shown here represent the statistical and systematic errors added in quadrature. .................................................. 20

1.12 Almond shaped interaction volume after a non-central collision of two nuclei. The spatial anisotropy with respect to the x-z plane (reaction plane) translates into a momentum anisotropy of the produced particles (anisotropic flow) .................................................. 21

1.13 Elliptic flow $v_2$ for different particle species measured by STAR and PHENIX compared to hydrodynamic model predictions. The data indicates the expected mass ordering in this low $p_T$ region. [33] ................................. 22

1.14 Elliptic flow for different particle species scaled according to the number of constituent quarks (NQ) of the hadrons as a function of NQ scaled $p_T$ (The lower plot shows the ratio of the data to the dashed-dotted fit to the data in the upper plot). .................................................. 23

1.15 Invariant cross section and invariant yield of direct photons as a function of $p_T$ in $p+p$ and Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV [35]. The three curves on the $p+p$ data represent NLO pQCD calculations, and the dashed curves show a modified power-law fit to the $p+p$ data, scaled by $T_{AA}$. The black solid curves are exponential plus the $T_{AA}$ scaled $p+p$ fit. The red dotted curve near the 0-20 % centrality data is a theory calculation [36] . . 25
1.16 Theoretical calculations of thermal photon emission are compared with the direct photon data in central 0-20% Au+Au collisions from PHENIX experiment [37] ......................................................... 26

1.17 Energy dependence of the net-charge fluctuations, measured in terms of $<N_{ch}>$ $\nu_{++-}^{corr}$ (left-axis) and $D$ (right-axis), for the top central collisions. The results from the STAR [39, 40] and ALICE [41] experiments are presented for $\Delta \eta = 1$ after the correction for charge conservation. The ALICE result for $\Delta \eta = 1.6$ is also shown. Both statistical (error bar) and systematic (box) errors are plotted. ........................................ 27

1.18 Upper panel: $J/\psi R_{AA}$ versus $N_{\text{part}}$ for Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV. The mid (forward) rapidity data are shown with open (solid) circles. Lower panel: Ratio of forward and mid-rapidity $J/\psi R_{AA}$ as a function of $N_{\text{part}}$ [47]. ......................................................... 29

2.1 The nucleon-pair luminosity is defined as $L_{NN} = A_1 A_2 L$, where $L$ is the luminosity, and $A_1$ and $A_2$ are the number of nucleons of the ions in the two beams respectively. [5] ......................................................... 36

2.2 A schematic drawing of the RHIC complex. ......................................................... 37

2.3 Three dimensional view of STAR detector. ......................................................... 39

2.4 A cutaway side view of the STAR detector. ......................................................... 40

2.5 The STAR TPC surrounds a beam interaction region at RHIC. The collisions take place near the center of the TPC. ......................................................... 42
2.6 A cutaway view of an outer sub-sector pad plane. The cut is taken along a radial line from the center of the TPC to the outer field cage so the center of the detector is towards the right hand side of the figure. The figures show the spacing of the anode wires relative to the pad plane, the ground shield grid, and the gated grid. The bubble diagram shows additional detail about the wire spacing. The inner sub-sector pad plane has the same layout except the spacing around the anode plane is 2 mm instead of the 4 mm shown here. All dimensions are in millimeters.

2.7 The anode pad plane with one full sector shown. The inner sub-sector is on the right and it has small pads arranged in widely spaced rows. The outer sub-sector is on the left and it is densely packed with larger pads.

2.8 Beam eye view of a central event in the STAR Time Projection Chamber.

2.9 Schematic diagram of an FTPC for the STAR experiment.

2.10 A scale drawing of the locations of pVPD and TOFp detectors in relation to the STAR TPC and the RHIC beam pipe.

2.11 A view of Barrel Electromagnetic Calorimeter, BEMC for STAR Experiment.

2.12 Principle of Photon Multiplicity Detector. Single cell hit is due to hadron while the signal deposited in contiguous cells is due to photon.

2.13 Unit cell schematic with cross-section showing the dimensions and the cathode extension, (b) Layout of the STAR PMD. Thick lines indicate supermodule boundaries. There are 12 supermodules each in the preshower plane and the veto plane. Divisions within a supermodule denote unit modules.
4.1 Multiplicity distributions for Au+Au collisions at \( \sqrt{s_{NN}} = 200 \) GeV within \(|\eta| < 0.5 \) and \( 0.2 < p_T < 5.0 \) GeV/c at different time steps 5 fm/c, 30 fm/c, and 100 fm/c for (a) positive and negative charged particles, (b) \( \pi^+ \) and \( \pi^- \), (c) \( K^+ \) and \( K^- \), and (d) \( p \) and \( \bar{p} \).

4.2 The values of \( \langle N_{ch} \rangle_{\nu^{+,-},dyn} \) (upper panel) and \( \langle N_{ch} \rangle_{\nu^{+,-},corr,dyn} \) (lower panel), plotted as functions of \( \Delta \eta \) window using UrQMD model at two different time steps for central (0-5\%) Au+Au collisions at \( \sqrt{s_{NN}} = 200 \) GeV.

4.3 The ratios of \( \langle N_{ch} \rangle_{\nu^{+,-},dyn} \) (upper panel) and \( \langle N_{ch} \rangle_{\nu^{+,-},corr,dyn} \) (lower panel), with respect to their are normalized values at the smallest \( \Delta \eta \) of 0.2 for central Au+Au collisions at \( \sqrt{s_{NN}} = 200 \) GeV. The ratios are plotted as a function of \( \Delta \eta \) for two different time steps, 5 fm/c and 30 fm/c.

4.4 \( \langle N_{ch} \rangle_{\nu^{+,-},corr,dyn} \) (left-axis) and corresponding values of D (right-axis) as a function center of mass energy in Au+Au or Pb+Pb collisions from HI-JING, UrQMD event generators for different \( \Delta \eta \) windows. Estimations for fluctuations originating from pion gas, hadron resonance gas and QGP are indicated.

5.1 Relation between freeze-out temperature, T (upper panel) and baryon chemical potential, \( \mu_B \) (lower panel) with respect to colliding energy.

5.2 \( V_Z \) distribution for Au+Au 39 GeV.

5.3 \( V_x \) vs \( V_y \) distribution for Au+Au 39 GeV.

5.4 \( V_{pdVz-Vz} \) distribution for Au+Au 39 GeV.
5.5 Presence of pile-up events in Au+Au collisions at centre of mass energy, $\sqrt{s_{NN}} = 39$ GeV to 7.7 GeV and the solid line (red color) to separate them from well-correlated events. ........................................... 100

5.6 $\eta$ distribution for Au+Au 39 GeV. Shaded portion shows the pseudo-rapidity range selected for the analysis. ........................................... 102

5.7 $p_T$ distribution for Au+Au 39 GeV. Shaded portion shows the accepted transverse momentum range. ........................................... 103

5.8 Uniform $\eta$ vs $p_T$ acceptance for all charged particles. The red boundary represents the region of acceptance. ........................................... 103

5.9 DCA distribution for Au+Au 39 GeV ........................................... 104

5.10 The uncorrected charged particle multiplicity measured within pseudo-rapidity range $-0.5 < \eta < 0.5$ (Refmult) and the uncorrected charged particle multiplicity measured within pseudo-rapidity range $0.5 < |\eta| < 1.0$ (Refmult2) for Au+Au collisions at $\sqrt{s_{NN}} = 39$ to 7.7 GeV. ............. 106

5.11 The uncorrected charged particle multiplicity measured within $0.5 < |\eta| < 1.0$ for Au+Au collisions at $\sqrt{s_{NN}} = 39$ GeV. Collision centralities or % cross-section are shown with the arrows in the plot. ......................... 107

5.12 Left side: The $\nu_{+-,dyn}$ values (upper panel) and corresponding RMS values (lower panel) plotted as function of $N_{part}$ for Au+Au 39 GeV for variation in Distance of Closest Approach. Right side: The $\nu_{+-,dyn}$ values (upper panel) and corresponding RMS values (lower panel) plotted as function of $N_{part}$ for Au+Au 39 GeV for variation in number of hits. ......................... 111
5.13 Left side: The $\nu_{+-,dyn}$ values (upper panel) and corresponding RMS values (lower panel) plotted as function of $N_{part}$ for Au+Au 27 GeV for variation in Distance of Closest Approach. Right side: The $\nu_{+-,dyn}$ values (upper panel) and corresponding RMS values (lower panel) plotted as function of $N_{part}$ for Au+Au 27 GeV for variation in number of hits.

5.14 Left side: The $\nu_{+-,dyn}$ values (upper panel) and corresponding RMS values (lower panel) plotted as function of $N_{part}$ for Au+Au 19.6 GeV for variation in Distance of Closest Approach. Right side: The $\nu_{+-,dyn}$ values (upper panel) and corresponding RMS values (lower panel) plotted as function of $N_{part}$ for Au+Au 19.6 GeV for variation in number of hits.

5.15 Left side: The $\nu_{+-,dyn}$ values (upper panel) and corresponding RMS values (lower panel) plotted as function of $N_{part}$ for Au+Au 11.5 GeV for variation in Distance of Closest Approach. Right side: The $\nu_{+-,dyn}$ values (upper panel) and corresponding RMS values (lower panel) plotted as function of $N_{part}$ for Au+Au 11.5 GeV for variation in number of hits.

5.16 Left side: The $\nu_{+-,dyn}$ values (upper panel) and corresponding RMS values (lower panel) plotted as function of $N_{part}$ for Au+Au 7.7 GeV for variation in Distance of Closest Approach. Right side: The $\nu_{+-,dyn}$ values (upper panel) and corresponding RMS values (lower panel) plotted as function of $N_{part}$ for Au+Au 7.7 GeV for variation in number of hits.

6.1 The dynamical net-charge fluctuations, $\nu_{+-,dyn}$ for the charged particles measured in pseudo-rapidity range $|\eta| < 0.5$ for Au+Au collisions at $\sqrt{s_{NN}} = 39$ GeV to 7.7 GeV as a function of number of participating nucleons.
6.2 The absolute value of dynamical net-charge fluctuations, $|\nu_{+,-,\text{dyn}}|$ for Au+Au collisions at $\sqrt{s_{NN}} = 39$ GeV to 7.7 GeV as a function of number of participating nucleons. ........................................... 128

6.3 The dynamical net-charge fluctuations, $\nu_{+,-,\text{dyn}}$, for 0-5% collisions as a function of beam energy. ................................................................. 130

6.4 The dynamical net-charge fluctuations, $\nu_{+,-,\text{dyn}}$, results for Au+Au collisions at $\sqrt{s_{NN}} = 39$ GeV to 7.7 GeV as a function of the number of participating nucleons for the variation in pseudo-rapidity ($\eta$) windows. 132

6.5 Dynamical net-charge fluctuations, $\nu_{+,-,\text{dyn}}$, results from Au+Au collisions at $\sqrt{s_{NN}} = 39, 27, 19.6, 11.5$ and 7.7 GeV as a function of integrated azimuthal ($\phi$) range ............................................................... 133

6.6 The dynamical net-charge fluctuations, $\nu_{+,-,\text{dyn}}$ as a function of vertex position along the beam direction ($V_Z$) for Au+Au collisions at $\sqrt{s_{NN}} = 39$ GeV to 7.7 GeV for 0-5% collisions. ................................................................. 135

6.7 The dynamical net-charge fluctuations, $\nu_{+,-,\text{dyn}}$ as a function of vertex position along the beam direction($V_Z$) for Au+Au collisions at $\sqrt{s_{NN}} = 39$ GeV to 7.7 GeV for 70-80% collisions. ................................................................. 136

6.8 The dynamical net-charge fluctuations, $\nu_{+,-,\text{dyn}}$ as a function of transverse momentum ($p_T$) for Au+Au collisions at $\sqrt{s_{NN}} = 39$ GeV to 7.7 GeV for 0-5% collisions. ................................................................. 137

6.9 The dynamical net-charge fluctuations, $\nu_{+,-,\text{dyn}}$ as a function of transverse momentum ($p_T$) for Au+Au collisions at $\sqrt{s_{NN}} = 39$ GeV to 7.7 GeV for 70-80% collisions. ................................................................. 139
6.10 The dynamical net-charge fluctuations, $\nu_{+-,\text{dyn}}$, scaled with the average number of participating nucleons for Au+Au collisions at $\sqrt{s_{NN}} = 39$ GeV to 7.7 GeV as a function of $N_{\text{part}}$. ................................. 140

6.11 The dynamical net-charge fluctuations, $\nu_{+-,\text{dyn}}$, scaled with the average number of participating nucleons, $N_{\text{part}}\nu_{+-,\text{dyn}}$ values for 0-5% collisions as a function of beam energy. ................................. 141

6.12 $\langle N_{\text{ch}} \rangle/\nu_{+-,\text{dyn}}^{\text{corr}}$ (left y-axis) and $D$ (right y-axis) as a function of energy for Au+Au interactions for 0-5% collisions. The theoretical predictions for a HG and a QGP are also indicated. ................................. 143

6.13 Ratio of data with different models in net charge dynamical fluctuations, $\nu_{+-,\text{dyn}}$, results from Au+Au collisions at $\sqrt{s_{NN}} = 39$ GeV, 27 GeV, 19.6 GeV, 11.5 GeV, 7.7 GeV as a function of the number of participating nucleons. ................................. 145
List of Tables

1.1 Quarks and their properties ........................................ 5

2.1 Comparison of Inner and Outer Sub Sector geometries ................. 45

5.1 RHIC operating modes for Beam Energy Scan Program, Fiscal years (FY) start on October 1st [8]. The duration of the physics runs are listed in 4th column. Luminosity is the integrated luminosity on the running time. The number of bunches during above runs are 111 and the ions per bunch is listed in column 6th of the table .................................................. 96

5.2 The RHIC data set including energies, Triggers and Trigger Ids .......... 97

5.3 Number of events analysed for different data sets .......................... 101

5.4 The slope and intercept value of the line used in the correlation plot between Refmult and number of ToF matched tracks for colliding energy, $\sqrt{s_{NN}} = 39$ to 7.7 GeV .............................................. 101

5.5 Data quality cuts used for analysis .................................... 102

5.6 Refmult2 cuts for nine centrality classes for Au+Au collisions at $\sqrt{s_{NN}} = 39$ GeV to 7.7 GeV ................................................... 105

5.7 $<N_{\text{part}}>$ values for nine centrality classes for $\sqrt{s_{NN}} = 39$ GeV to 7.7 GeV 108
5.8 Systematic error contribution for different centrality classes in Au+Au collisions at $\sqrt{s_{NN}} = 39$ GeV due to DCA and nhits variation. . . . . . . . . 116

5.9 Systematic error contribution for different centrality classes in Au+Au collisions at $\sqrt{s_{NN}} = 27$ GeV due to DCA and nhits variation. . . . . . . . . 116

5.10 Systematic error contribution for different centrality classes in Au+Au collisions at $\sqrt{s_{NN}} = 19.6$ GeV due to DCA and nhits variation. . . . . . . . . 117

5.11 Systematic error contribution for different centrality classes in Au+Au collisions at $\sqrt{s_{NN}} = 11.5$ GeV due to DCA and nhits variation. . . . . . . . . 117

5.12 Systematic error contribution for different centrality classes in Au+Au collisions at $\sqrt{s_{NN}} = 7.7$ GeV due to DCA and nhits variation. . . . . . . . . . 118

6.1 $\langle N_{total} \rangle$, efficiency corrected $\langle N_{ch} \rangle$ and $\nu^{corr}_{+,-,dyn}$ at five energies for 0-5% Au+Au collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142