LIST OF TABLES

Table 2.1 Factors associated with Urolithiasis
Table 2.2 Medical Treatment of Urolithiasis Dependent on Pathophysiological Factors
Table 2.3 List of Plants Showing Antiurolithiatic Activity by dissolving the stones
Table 2.4 Anti-oxidant compounds and their mechanism of action
Table 2.5 Classification of Bergenia ligulata
Table 2.6 Vernacular names of Bergenia ligulata
Table 3.1 Chemicals and Reagents
Table 3.2 Composition of standard animal diet
Table 4.1 Phytochemical analysis of different extracts
Table 4.2 Percentage CaOx crystal growth inhibitory activity of purified sub fractions
Table 4.3 1H NMR and 13C NMR data of SFR 1
Table 4.4 FT-IR peaks and their corresponding functional groups of SFR1
Table 4.5 Body weights of animals before and after nine days
Table 4.6 Serum urea and creatinine levels after 9 days of treatment
Table 4.7 Oxalate and calcium levels in urine after 9 days of treatment
Table 4.8 Levels of Creatinine clearance after nine days of treatment
Table 4.9 Average number of crystals observed at five different fields
LIST OF FIGURES

Figure 2.1 Stones at different parts of urinary system
Figure 2.2 Proportions of kidney stones by types
Figure 2.3 Different routes taken by ingested oxalate or oxalate precursors
Figure 2.4 Morphology of different stones (a) Calcium oxalate; (b) Calcium phosphate; (c) Uric acid; (d) Struvite and (e) Cystine
Figure 2.5 Mechanism of stone formation
Figure 2.6 Oxidative stress mediated damage to DNA and protein
Figure 2.7 Schematics of hyperoxaluria induced generation of reactive oxygen species, involvement of mitochondria and their effect on cellular physiology and pathology
Figure 2.8 Diagrammatic outline of ROS metabolism
Figure 2.9 Cellular Targets of ROS
Figure 2.10 Intracellular mechanism of Lipid peroxidation
Figure 2.11 Classification of natural antioxidants
Figure 2.12 Extracorporeal Shock Wave Lithotripsy
Figure 2.13 Percutaneous Nephrolithotomy
Figure 2.14 *Bergenia ligulata*
Figure 3.1 Schematic outline of preparation of plant extract
Figure 3.2 Layouts of a) Soxhlet Apparatus and b) Rotary Evaporator
Figure 3.3 Schematic diagram of metabolic cage for the urine collection
Figure 4.1 Strategy of sequential extraction and activity guided purification of the rhizome of *B.ligulata* with percentage yield
Figure 4.2 Percentage CaOx crystal growth inhibitory activity of different crude extracts prepared in 10% DMSO
Figure 4.3 Percentage inhibition of Calcium ions by different crude extracts prepared in 10% DMSO
Figure 4.4 Percentage inhibitions of phosphate ions by different crude extracts prepared in 10% DMSO
List of Figures

Figure 4.5 Activity trend of the first column isolated fraction prepared in 10% DMSO
Figure 4.6 Percentage inhibitions of calcium and phosphate ions by different sub fractions prepared in 10% DMSO
Figure 4.7 Thin Layer Chromatography of sub fraction 1 visualized under UV light at 254nm
Figure 4.8 Liquid Chromatography-Mass Spectrum (a) Liquid chromatogram of SFR 1 (b) Mass spectrum of SFR 1
Figure 4.9 Nuclear magnetic resonance (NMR) (a) 1H NMR Spectrum of SFR 1 (b) 13C NMR spectrum of SFR 1
Figure 4.10 Fourier Transform Infra Red (FT-IR) Spectrum of SFR 1
Figure 4.11 Ultra Violet (UV) spectrum of SFR 1
Figure 4.12 Structure of bergenin
Figure 4.13 Comparison of percentage inhibitory activity of CaOx crystal growth by 20µl of 0.5% solution of BRG, BLE and Cystone in 10% DMSO
Figure 4.14 Comparison of In vitro antioxidant activities of BRG with BLE and α-tocopherol using FRAP assay
Figure 4.15 Comparison of percentage scavenging activity between 30µg/ml solution of BRG, BLE and α-tocopherol
Figure 4.16 Comparison of initial and final body weight in different groups
Figure 4.17 Creatinine (a) and urea (b) levels in serum
Figure 4.18 Calcium and oxalate levels in urine
Figure 4.19 Creatinine and urea levels in urine
Figure 4.20 Creatinine clearance (ml/min)
Figure 4.21 Lactate dehydrogenase (LDH) activity (U/min/mg protein)
Figure 4.22 Alkaline phosphatase (ALP) activity (U/min/mg protein)
Figure 4.23 Crystalluria depicted by polarization micrographs of experimental rat’s urine (a) Urine of NRM rats (b) Urine of HYO showing number of dumbbell shaped COM crystals (c) Urine of BRG treated rats showing Crystal debris (d) Urine of BLE treated rats showing crystal debris. Original magnifications of 100X
Figure 4.24 Histopathological examination of kidney section of NRM group seen under microscope (Leica D ME) (a) 100X (b) 400X

Figure 4.25 Histopathological examination of kidney section of HYO group seen under microscope (Leica D ME) (a) 100X and (b,c) 400X

Figure 4.26 Histopathological examination of kidney section of BRG group seen under microscope (Leica D ME) (a) 100X and (b,c) 400X

Figure 4.27 Histopathological examination of kidney section of BLE group seen under microscope (Leica D ME) (a) 100X and (b,c) 400X

Figure 4.28 Oxidative stress markers in renal tissue of hyperoxaluric rats treated with BRG and BLE (a) Lipid peroxidation (LPO) (b) Reduced glutathione (GSH)

Figure 4.29 (a) Superoxide dismutase (SOD) activity (U/min/mg protein) (b) Catalase activity (U/min/mg protein) (c) Glutathione peroxidase (GPx) activity (U/min/mg protein)

Figure 4.30 Mitochondrial dysfunction (a) Complex I (nmol NADH oxidized/min/mg protein) (b) Complex II (nmol succinate oxidized/min/mg protein) (c) Complex IV (μmol cytochrome c oxidized/min/mg protein) (d) MTT (μg formazan formed/min/mg protein)

Figure 4.31 Mitochondrial antioxidant status (a) LPO (b) GSH (c) SOD (d) GPx

Figure 4.32 Non enzymatic parameters in liver tissue

Figure 4.33 Enzymatic antioxidant parameter in liver tissue

Figure 5.1 Metabolism of ethylene glycol in liver and excretion of CaOx crystals in kidney

Figure 5.2 Possible way of hydrolysis of bergenin into C-glycoside of 4-O-methyl Gallic acid and interaction of bergenin with calcium oxalate crystal

Figure 5.3 Potential target sites of BRG during EG induced hyperoxaluria

Figure 6.1 Graphical outline of thesis work