APPENDIX
Determination of dynamic pressure volume relations from airflow and pressure tracings

Flow scale: 1 mm = 10.9 ml/sec
Time scale: 1 mm = 0.04 sec

The pressure volume relations at definite points during the inspiratory manoeuvre were determined by marking off corresponding points \((V_0, V_1, V_2 \text{ etc.}, \text{ and } P_0, P_1, P_2 \text{ etc.})\) on the flow and pressure tracings. The volume inspired at \(V_1, V_2 \text{ etc.},\) were determined using the trapezoidal rule as follows:

Since volume = flow \(\times dt\) (where \(t\) is time), the volume of air inspired from \(V_0\) to \(V_1\) is equal to the area under the flow curve between these two points. To facilitate the measurement of this area, it was divided into 5 units, by curvilinear lines parallel to the chart lines and 1 mm apart.

Volume inspired during the first 0.04 second, i.e. the area of the first unit which is a triangle \(= \frac{54.50}{2} \times 0.04 = 1.09 \text{ ml}\) (where 54.50 is the flow at \(V_1\)). Volume inspired during the second 0.04 second i.e. the area of the second unit which is a trapezoidal figure \(= \frac{54.50 + 76.30}{2} \times 0.04 = 2.62 \text{ ml}\) (where 54.50 is the flow at \(V_1\) and 76.30 is the flow at \(V_2\)). Therefore the volume inspired from \(V_0\) to
\[V_2 = 1.09 + 2.62 = 3.71 \text{ ml} \]

Calculations were thus continued until the volumes inspired at \(V_1, V_2, V_3 \) etc., were determined. The corresponding pressure changes were obtained from the pressure tracing.

Similarly, the pressure volume relations were determined also during expiration.

Measurement of nonelastic resistance

Eg. Nonelastic resistance at a point corresponding to \(V_3 \) is:

\[V_3 = \text{Nonelastic pressure at } V_3 \]

\[\text{Airflow at } V_3 \]

Volume change from \(V_0 \) to \(V_3 = 36.50 \text{ ml} \)

Pressure change from \(P_0 \) to \(P_3 = 1.0 \text{ cm H}_2\text{O} \)

Dynamic compliance (calculated as shown in Fig. 20) = 38.88 ml/cm H\(_2\)O

Elastic pressure = \(\frac{36.5}{38.88} = 0.96 \text{ cm H}_2\text{O} \).

Therefore, nonelastic pressure = 1.0 cm - 0.96 cm = 0.04 cm H\(_2\)O

Airflow at \(V_3 = 76.3 \text{ ml/sec} = 0.0763 \text{ L/sec} \)

Therefore, nonelastic resistance = \(\frac{0.04}{0.0763} \)

= 0.52 cm H\(_2\)O/Lps

Similarly, expiratory nonelastic resistance was measured from expiratory airflow and pressure changes.