List of Figures

1.1 Schematic representation of Gabor transformation. .. 11
1.2 The time frequency windows of a) STFT and b) CWT. 12
1.3 Original function $f(x) = \sin \pi x + \cos 2\pi x + 0.6I(x > 1/2)$ and five different levels of approximation f_3, f_7, f_{15}, f_{31} and f_{63}. .. 13
1.4 The ‘signal’, ‘wavelet’ and the ‘WT’ .. 15
1.5 ‘Wavelets’ of different ‘width’ ... 16
1.6 The ‘lattice’ of time frequency localization for the WT(above) and windowed FT(below) ... 17
1.7 Graph of Haar scaling function ... 20
1.8 Translates of ‘scaling function’ ... 21
1.9 The signal, using translate of ‘scaling function’ .. 22
1.10 Signal using ‘scaled’ translate of scaling function 22
1.11 Graph of Haar wavelet. ... 24
1.12 Translates of Haar wavelets. ... 25
1.13 A signal in space W_0. ... 25
1.14 $\psi_{1,0} = 2^{1/2}\psi(2x)$ and $\psi_{1,1} = 2^{1/2}\psi(2x - 1)$. 26
1.15 $4\phi(2t) + 2\phi(2t - 1)$ and $3\phi(t) + \psi(t)$. .. 27
1.16 Daubechies ‘scaling’ and ‘wavelet’ function for $N = 2$ and $N = 3$. 34
1.17 Symlets ‘scaling’ and ‘wavelet’ function for $N = 4$ and $N = 8$. 36
2.1 Decomposition .. 43
2.2 Reconstruction .. 44
2.3 An illustration of Mallat’s cascade algorithm. By sequential refinement on dyadic points, Daubechies db2 wavelet function is constructed. 45
2.4 An illustration of decomposition algorithm. ... 49
2.5 An illustration of reconstruction algorithm. .. 50
2.6 Plot of (a) Original block (b) noisy block (c) true wavelet coefficients and (d) noisy wavelet coefficients. .. 52
2.7 Plot of ‘hard’ and ‘soft’ threshold rules. ... 54
2.8 Plot of universal, minimax and the proposed threshold values as a function of sample size n. ... 62
2.9 Original functions, Blocks, Bumps, Doppler and Heavisine with $n = 4096$. .. 64
2.10 Four functions, Blocks, Bumps, Doppler and Heavisine with Gaussian white noise, \(\sigma = 1 \), SNR = 7. .. 65
2.11 Reconstruction of (a) Blocks, (b) Bumps, (c) Doppler, and (d) Heavisine with ‘soft’ thresholding using minimax policy. 65
2.12 Reconstruction of (a) Blocks, (b) Bumps, (c) Doppler, and (d) Heavisine with ‘soft’ thresholding using universal policy. 66
2.13 Reconstruction of (a) Blocks, (b) Bumps, (c) Doppler, and (d) Heavisine with ‘soft’ thresholding using the threshold value \(\hat{\sigma} \sqrt{J} \). 66
3.1 Schematic representation of the visualization of the two dimensional wavelet transform of A. .. 72
3.2 (a) Original Lena image (b) noisy image with \(\sigma = 30 \) (c) de-noised using sure shrink (d) de-noised using universal (e) de-noised using minimax (f) de-noised using proposed threshold with ‘soft’ thresholding rule. 78
3.3 (a) Original Lena image (a) noisy image with \(\sigma = 30 \) (c) de-noised using sure shrink (d) de-noised using universal (e) de-noised using minimax (f) de-noised using proposed threshold with ‘hard’ thresholding rule. 79
3.4 (a) Original House image (a) noisy image with \(\sigma = 25 \) (c) de-noised using sure shrink (d) using universal (e) using minimax (f) using proposed threshold with ‘soft’ thresholding rule. 84
3.5 (a) Original House image (a) noisy image with \(\sigma = 25 \) (c) de-noised using sure shrink (d) using universal (e) using minimax (f) using proposed threshold with ‘soft’ thresholding rule. 85
3.6 (a) Original Tiles image (a) noisy image with \(\sigma = 25 \) (c) de-noised using sure shrink (d) using universal (e) using minimax (f) using proposed threshold with ‘soft’ thresholding rule. 86
3.7 (a) Original Tiles image (a) noisy image with \(\sigma = 25 \) (c) de-noised using sure shrink (d) using universal (e) using minimax (f) using proposed threshold with ‘soft’ thresholding rule. 87
3.8 (a) Original (b) noisy edge contour with \(\sigma = 25 \) of Lena image. Edge contour of de-noised image (c) using sure shrink (d) using universal (e) using minimax and (f) using proposed threshold, with ‘soft’ thresholding rule. 88
4.1 (a) Signal block (b) Stationary wavelet transform at level 3 (c) The non-decimated wavelet transform at level 3. 95
4.2 Four functions, Blocks, Bumps, Doppler and Heavisine with Gaussian white noise, \(\sigma = 1 \), SNR = 7. 97
4.3 Reconstruction of (a) Blocks, (b) Bumps, (c) Doppler, and (d) Heavisine with soft thresholding using minimax policy. 97
4.4 Reconstruction of (a) Blocks, (b) Bumps, (c) Doppler, and (d) Heavisine with soft thresholding using universal policy. 98
List of Figures

4.5 Reconstruction of (a) Blocks, (b) Bumps, (c) Doppler, and (d) Heavisine with soft thresholding using the threshold value $\hat{\sigma}\sqrt{J}$. 98

4.6 (a) Noisy Boat image with $\sigma = 20$ (b) de-noised using universal (c) de-noised using minimax (d) de-noised using proposed threshold with soft thresholding rule. .. 103

4.7 (a) Noisy Goldhill image with $\sigma = 20$ (b) de-noised using universal (c) de-noised using minimax (d) de-noised using proposed threshold with soft thresholding rule. .. 103

4.8 (a) Noisy Boat image with $\sigma = 20$. The images (b), (c) and (d) are the zoom in parts of denoised image using universal minimax and proposed threshold values respectively. 104

4.9 (a) Noisy Boat image with $\sigma = 20$. The images (b), (c) and (d) are the zoom in parts of denoised image using universal minimax and proposed threshold values respectively. 104

4.10 (a) Noisy Tiles image with $\sigma = 20$ (b) de-noised using universal (c) de-noised using minimax (d) de-noised using proposed threshold with soft thresholding rule. .. 105

4.11 (a) Noisy Pentagon image with $\sigma = 20$ (b) de-noised using universal (c) de-noised using minimax (d) de-noised using proposed threshold with soft thresholding rule. .. 105

4.12 (a) Noisy Tiles image with $\sigma = 20$. The images (b), (c) and (d) are the zoom in parts of denoised image using universal minimax and proposed threshold values respectively. 106

4.13 (a) Noisy Pentagon image with $\sigma = 20$. The images (b), (c) and (d) are the zoom in parts of denoised image using universal minimax and proposed threshold values respectively. 106

5.1 The plot of the original curve of equation 5.1, noisy curve and the absolute value of the empirical wavelet coefficients at level $j = 7$ with $\sigma = 0.2$. The dotted line corresponding to the threshold line used by Wang[63] .. 116

5.2 The plot of the original curve of equation 5.2, noisy curve and the absolute value of the empirical wavelet coefficients at level $j = 7$ with $\sigma = 0.2$. The dotted line corresponding to the threshold line used by Wang[63] .. 117

5.3 The plot of the original curve of equation 5.2, noisy curve and the absolute value of the empirical wavelet coefficients at level $j = 6$ with $\sigma = 0.2$. The dotted line corresponding to the threshold line used by Wang[63] .. 118

5.4 The plot of the original curve of equation 5.2, noisy curve and the absolute value of the empirical wavelet coefficients at level $j = 5$ with $\sigma = 0.4$. ... 119

5.5 The plot of the data with an outlier and absolute empirical wavelet coefficients. ... 121