CHAPTER 6

SEPARATION AXIOMS THROUGH $\alpha^*\text{- OPEN SET}$

In this chapter, we introduce $\alpha^*\text{-}T_i$ spaces ($i=0,1,2$) using α^*-open set and investigate their properties. We give characterizations for these spaces. We study the relationship among themselves and with known separation axioms.

6.1. $\alpha^*\text{-}T_0$ SPACES

Definition 6.1.1: A topological space X is said to be $\alpha^*\text{-}T_0$ space if for each pair of distinct points x,y of X, there exists an α^*-open set containing one point but not the other.

Theorem 6.1.2: Every T_0 space is a $\alpha^*\text{-}T_0$ space.

Proof: Let X be a T_0 space. Let x,y be two distinct points in X. Since X is T_0 space, there exists an open set M in X such that $x \in M$, $y \not\in M$. Since, every open set is α^*-open, M is α^*-open in X. Thus, for any two distinct points x,y in X there exists an α^*-open M such that $x \in M$, $y \not\in M$. Hence X is a $\alpha^*\text{-}T_0$ space.

Remark 6.1.3: The following example supports that the converse of the above theorem is not true in general.

Example 6.1.4: Let $X = \{a, b, c\}$, $\tau = \{\emptyset, \{a,b\}, X\}$. In this space, $\alpha^* O (X, \tau) = \{\emptyset, \{a\}, \{b\}, \{a,b\}, \{a,c\}, \{b,c\}, X\}$. Clearly X is $\alpha^*\text{-}T_0$ but not T_0 space.

Remark 6.1.5: Clearly, every $\alpha\text{-}T_0$ space is a $\alpha^*\text{-}T_0$ space. Since, every α open set is α^*-open but the converse is not true.
Example 6.1.6: Let \(X = \{a, b, c\}, \tau = \{\phi, \{a,b\}, X\} \). In this space
\[\alpha^* \mathcal{O}(X, \tau) = \{\phi, \{a\}, \{b\}, \{a,b\}, \{a,c\}, \{b,c\}, X\} \]
and
\[\alpha \mathcal{O}(X, \tau) = \{\phi, \{a,b\}, X\}. \]
Clearly \(X \) is \(\alpha^* \)-T\(_0\) but not \(\alpha^* \)-T\(_0\) space.

Theorem 6.1.7: A space \(X \) is an \(\alpha^* \)-T\(_0\) space if and only if \(\alpha^* \)-closures of distinct points are distinct.

Proof: Let \(x,y \in X \) with \(x \neq y \) and \(X \) be an \(\alpha^* \)-T\(_0\) space. We shall show that
\[\alpha^* \text{cl}(\{x\}) \neq \alpha^* \text{cl}(\{y\}). \]
Since \(X \) is \(\alpha^* \)-T\(_0\), there exists an \(\alpha^* \)-open \(M \) such that \(x \in M, y \in M \). Also, \(x \notin X-M \) and \(y \in X-M \), where \(X-M \) is \(\alpha^* \)-closed set in \(X \). Since \(\alpha^* \text{cl}(\{y\}) \) is the intersection of all \(\alpha^* \)-closed sets which contain \(y \).
Hence \(y \in \alpha^* \text{cl}(\{y\}) \) but \(x \notin \alpha^* \text{cl}(\{y\}) \) as \(x \notin X-M \). Therefore,
\[\alpha^* \text{cl}(\{x\}) \neq \alpha^* \text{cl}(\{y\}). \]
Conversely, suppose that for any pair of distinct points \(x,y \in X \),
\[\alpha^* \text{cl}(\{x\}) \neq \alpha^* \text{cl}(\{y\}). \]
Then, there exists at least one point \(z \in X \) such that \(z \in \alpha^* \text{cl}(\{x\}) \) but \(z \notin \alpha^* \text{cl}(\{y\}). \)
We claim that \(x \notin \alpha^* \text{cl}(\{y\}). \) If \(x \in \alpha^* \text{cl}(\{y\}) \) then \(\alpha^* \text{cl}(\{x\}) \subseteq \alpha^* \text{cl}(\{y\}). \)
So, \(z \in \alpha^* \text{cl}(\{x\}) \) which is a contradiction.
Now, \(x \notin \alpha^* \text{cl}(\{y\}) \) implies \(x \in X - \alpha^* \text{cl}(\{y\}) \) which is a \(\alpha^* \)-open set in \(X \) containing \(x \) but not \(y \). Hence, \(X \) is \(\alpha^* \)-T\(_0\) space.

Theorem 6.1.8: Let \(f: (X, \tau) \rightarrow (Y, \sigma) \) be a bijection, \(\alpha^* \)-open map and \(X \) is \(\alpha^* \)-T\(_0\) space, then \(Y \) is also \(\alpha^* \)-T\(_0\) space.

Proof: Let \(y_1, y_2 \in Y \) with \(y_1 \neq y_2 \). Since \(f \) is a bijection, there exists \(x_1, x_2 \in X \) with \(x_1 \neq x_2 \) such that \(f(x_1) = y_1 \) and \(f(x_2) = y_2 \). Since, \(X \) is \(\alpha^* \)-T\(_0\), there exists a \(\alpha^* \)-open set \(M \) in \(X \) such that \(x_1 \in M, x_2 \notin M \).
Since, \(f \) is \(\alpha^* \)-open map, \(f(M) \) is...
a α^*-open set in Y. Now, we have $x_1 \in M \Rightarrow f(x_1) \in f(M) \Rightarrow y_1 \in f(M)$ and $x_2 \notin M \Rightarrow f(x_2) \notin f(M) \Rightarrow y_2 \notin f(M)$. Hence, for any two distinct points $y_1, y_2 \in Y$, there exists α^*-open set $f(M)$ in Y such that $y_1 \in f(M)$ and $y_2 \notin f(M)$. Hence Y is a α^*-T_0 space.

Theorem 6.1.9: Let $f: (X, \mathcal{T}) \to (Y, \sigma)$ be a bijection, α^*-open map and X is T_0 space, then Y is also α^*-T_0 space.

Proof: Let $y_1, y_2 \in Y$ with $y_1 \neq y_2$. Since f is a bijection, there exists $x_1, x_2 \in X$ with $x_1 \neq x_2$ such that $f(x_1) = y_1$ and $f(x_2) = y_2$. Since, X is T_0, there exists an open set M in X such that $x_1 \in M$, $x_2 \notin M$. Since, f is α^*-open map, $f(M)$ is a α^*-open set in Y. Now, we have $x_1 \in M \Rightarrow f(x_1) \in f(M) \Rightarrow y_1 \in f(M)$ and $x_2 \notin M \Rightarrow f(x_2) \notin f(M) \Rightarrow y_2 \notin f(M)$. Hence, for any two distinct points $y_1, y_2 \in Y$, there exists α^*-open set $f(M)$ in Y such that $y_1 \in f(M)$ and $y_2 \notin f(M)$. Hence Y is a α^*-T_0 space.

Theorem 6.1.10: Let $f: (X, \mathcal{T}) \to (Y, \sigma)$ be a bijection, α^*-irresolute and Y is α^*-T_0 space, then X is also α^*-T_0 space.

Proof: Let $y_1, y_2 \in Y$ with $y_1 \neq y_2$. Since f is a bijection, there exists $x_1, x_2 \in X$ with $x_1 \neq x_2$ such that $f(x_1) = y_1$ and $f(x_2) = y_2 \Rightarrow x_1 = f^{-1}(y_1)$ and $x_2 = f^{-1}(y_2)$. Since, Y is α^*-T_0, there exists an α^*-open set M in Y such that $y_1 \in M$, $y_2 \notin M$. Since, f is α^*-irresolute map, $f^{-1}(M)$ is a α^*-open set in X. Now, we have $y_1 \in M \Rightarrow f^{-1}(y_1) \in f^{-1}(M) \Rightarrow x_1 \in f^{-1}(M)$ and $y_2 \notin M \Rightarrow f^{-1}(y_2) \notin f^{-1}(M) \Rightarrow x_2 \notin f^{-1}(M)$. Hence, for any two distinct points $x_1, x_2 \in X$, there exists
\(\alpha \)-open set \(f^{-1}(M) \) in \(X \) such that \(x_1 \in f^{-1}(M) \) and \(x_2 \notin f^{-1}(M) \). Hence \(X \) is a \(\alpha \)-\(T_0 \) space.

Theorem 6.1.11: Let \(f: (X, \tau) \rightarrow (Y, \sigma) \) be a bijection, \(\alpha \)-continuous and \(Y \) is T\(_0\) space, then \(X \) is also \(\alpha \)-\(T_0 \) space.

Proof: Let \(f: (X, \tau) \rightarrow (Y, \sigma) \) be a \(\alpha \)-continuous map and \(Y \) is T\(_0\) space. Let \(x_1, x_2 \in X \), with \(x_1 \neq x_2 \). Let \(y_1 = f(x_1) \) and \(y_2 = f(x_2) \). Since, \(f \) is one to one, \(y_1 \neq y_2 \). Since, \(Y \) is T\(_0\), there exists an open set \(M \) in \(Y \) containing \(y_1 \) or \(y_2 \) but not the other. Since, \(f \) is \(\alpha \)-continuous, \(f^{-1}(M) \) is a \(\alpha \)-open set containing one of \(x_1 \) and \(x_2 \) but not the other. Thus, \(X \) is \(\alpha \)-\(T_0 \) space.
6.1 $\alpha^*\cdot T_1$ SPACE

Definition 6.2.1: A topological space X is said to be $\alpha^*\cdot T_1$ space if for each pair of distinct points x, y of X, there exists a pair of α^*-open sets, one containing x but not y and the other containing y but not x.

Remark 6.2.2: Every $\alpha^*\cdot T_1$ space is $\alpha^*\cdot T_0$ space but the converse is not true.

Example 6.2.3: Let $X = Y = \{a, b, c\}$, $\mathcal{T} = \{\phi, \{a\}, \{ab\}, X\}$. In this space $\alpha^*O(X, \mathcal{T}) = \{\phi, \{a\}, \{b\}, \{ab\}, \{ac\}, X\}$. It is $\alpha^*\cdot T_0$ but not $\alpha^*\cdot T_1$ because for the pair of distinct points a and c, there is no α^*-open sets containing c but not a.

Theorem 6.2.4: For a topological space X the following are equivalent.

(i) X is $\alpha^*\cdot T_1$ space.

(ii) for every $x \in X$, $\{x\}$ is α^*-closed in X.

(iii) Each subset of X is the intersection of α^*-open sets containing it.

(iv) The intersection of all α^*-open sets in X containing the points x is $\{x\}$.

Proof:

(i) \Rightarrow (ii):

Suppose that X is $\alpha^*\cdot T_1$ space. Let $x \in X$. Then for every $y \neq x$, there exists a α^*-open sets U in X containing y but not x. $U \cap \{x\} \neq \phi$. Therefore, $x \in U$ a contradiction. Thus, x is α^*-closed.

(ii) \Rightarrow (iii):

Let $A \subseteq X$. Then, for each $x \in X \setminus A$, $\{x\}$ is α^*-closed in X and hence, $X \setminus \{x\}$ is α^*-open. Clearly, $A \subseteq X \setminus \{x\}$ for each $x \in X \setminus A$. Therefore,
A \subseteq \cap \{ X\{x\}: x \in X\A \}. On the other hand, if y \not\in A, then y \in X\setminus A and y \not\in X\setminus \{y\}. This implies y \not\in \cap \{ X\{x\}: x \in X\A \}. Hence, \cap \{ X\{x\}: x \in X\A \} \subseteq A.

Therefore, A = \cap \{ X\{x\}: x \in X\A \} which proves (iii)

(iii) \Rightarrow (iv):

Taking A = \{x\}, by (iii) A = \{x\} = \cap \{ U: U is \alpha^*\text{-open and } x \in U \}. This proves (iv)

(iv) \Rightarrow (i):

Let x, y \in X with y \neq x. Then y \not\in \{x\} = \cap \{ U: U is \alpha^*\text{-open and } x \in U \}. Hence, there exists a \alpha^*\text{-open set } U\text{ containing } x\text{ but not } y. Similarly, there exists a \alpha^*\text{-open set } V\text{ containing } y\text{ but not } x. Thus, X is \alpha^*\text{-T}_1\text{ space.}

Theorem 6.2.5: Let \(f: (X, \tau) \rightarrow (Y, \sigma) \) be a bijection

(i) If \(f \) is a \(\alpha^*\text{-continuous} \) and \(Y \) is \(\alpha^*\text{-T}_1 \), then \(X \) is \(\alpha^*\text{-T}_1 \).

(ii) If \(f \) is a \(\alpha^*\text{-irresolute} \) and \(Y \) is \(\alpha^*\text{-T}_1 \), then \(X \) is \(\alpha^*\text{-T}_1 \).

(iii) If \(f \) is \(\alpha^*\text{-open} \) and \(X \) is \(\alpha^*\text{-T}_1 \), then \(Y \) is \(\alpha^*\text{-T}_1 \).

Proof:

(i) Suppose \(f \) is \(\alpha^*\text{-continuous} \) bijection and \(Y \) is \(\alpha^*\text{-T}_1 \). Let \(x_1, x_2 \in X \), with \(x_1 \neq x_2 \). Let \(y_1 = f(x_1) \) and \(y_2 = f(x_2) \). Since, \(f \) is one to one, \(y_1 \neq y_2 \). Since, \(Y \) is \(\alpha^*\text{-T}_1 \), there exists an open set \(U \) and \(V \) in \(Y \) such that \(y_1 \in U \) but \(y_2 \not\in U \) and \(y_2 \in V \) but \(y_1 \not\in V \). Since, \(f \) is bijection, \(x_1 \in f^{-1}(U) \) but \(x_2 \not\in f^{-1}(U) \) and \(x_1 \not\in f^{-1}(V) \) but \(x_2 \in f^{-1}(V) \). Since, \(f \) is \(\alpha^*\text{-continuous} \), \(f^{-1}(U) \) and \(f^{-1}(V) \) are \(\alpha^*\text{-open sets in } X \). Thus, \(X \) is \(\alpha^*\text{-T}_1 \).

(ii) Suppose \(f \) is \(\alpha^*\text{-irresolute} \) bijection and \(Y \) is \(\alpha^*\text{-T}_1 \). Let \(x_1, x_2 \in X \), with \(x_1 \neq x_2 \). Let \(y_1 = f(x_1) \) and \(y_2 = f(x_2) \). Since, \(f \) is one to one, \(y_1 \neq y_2 \). Since, \(Y \) is
\(\alpha^*-T_1 \), there exists an \(\alpha^*- \) open set \(U \) and \(V \) in \(Y \) such that \(y_1 \in U \) but \(y_2 \notin U \) and \(y_2 \in V \) but \(y_1 \notin V \). Since, \(f \) is bijection, \(x_1 \in f^{-1}(U) \) but \(x_2 \notin f^{-1}(U) \) and \(x_1 \notin f^{-1}(V) \) but \(x_2 \in f^{-1}(V) \). Since, \(f \) is \(\alpha^*- \) irresolute, \(f^{-1}(U) \) and \(f^{-1}(V) \) are \(\alpha^*- \) open sets in \(X \). Thus, \(X \) is \(\alpha^*-T_1 \).

(iii) Suppose \(f \) is a \(\alpha^*- \) open bijection and \(X \) is \(T_1 \). Let \(y_1 \neq y_2 \in Y \). Since, \(f \) is a bijection, there exists \(x_1, x_2 \in X \) such that \(f(x_1) = y_1 \) and \(f(x_2) = y_2 \) with \(x_1 \neq x_2 \).

Since, \(X \) is \(T_1 \), there exists open sets \(U \) and \(V \) in \(X \) such that \(x_1 \in U \) but \(x_2 \notin U \) and \(x_2 \in V \) but \(x_1 \notin V \). Since, \(f \) is \(\alpha^*- \) open, \(f(U) \) and \(f(V) \) are \(\alpha^*- \) open sets in \(Y \) such that \(y_1 = f(x_1) \in f(U) \) and \(y_2 = f(x_2) \in f(V) \). Since, \(f \) is a bijection, \(y_2 = f(x_2) \notin f(U) \) and \(y_1 = f(x_1) \notin f(V) \). Thus, \(Y \) is \(\alpha^*-T_1 \).

Theorem 6.2.6: A topological space \((X, \tau) \) is \(\alpha^*-T_1 \) if and only if the singletons are \(\alpha^*- \) closed.

Proof: Let \((X, \tau) \) be \(\alpha^*-T_1 \) and \(x \) be any point of \(X \). Suppose \(y \in \{x\}^c \) then \(x \neq y \) and so there exists a \(\alpha^*- \) open \(U \) such that \(y \in U \) but \(x \notin U \). Consequently, \(y \in U \subseteq \{x\}^c \) that is \(\{x\}^c = \cup \{ U : y \in \{x\}^c \} \) which is \(\alpha^*- \) open. Hence, \(\{x\} \) is \(\alpha^*- \) closed.

Conversely, Let \(x,y \) be two distinct points of \(X \). Then \(y \in \{x\}^c \) and \(\{x\}^c \) is \(\alpha^*- \) open set containing \(y \) but not \(x \). Similarly, \(\{y\}^c \) is a \(\alpha^*- \) open set containing \(x \) but not \(y \). Hence, \(X \) is \(\alpha^*-T_1 \).
6.3. \(\alpha \ * - T_2 \) SPACES

Definition 6.3.1: A space \(X \) is said to be \(\alpha \ * - T_2 \) Spaces, if for each pair of distinct points \(x, y \) of \(X \), there exists disjoint \(\alpha \ * - \) open sets \(U \) and \(V \) such that \(x \in U \) and \(y \in V \).

Theorem 6.3.2: Let \(f: (X, \tau) \rightarrow (Y, \sigma) \) be a bijection

(i) If \(f \) is a \(\alpha \ * - \) continuous and \(Y \) is \(T_2 \), then \(X \) is \(\alpha \ * - T_2 \).

(ii) If \(f \) is a \(\alpha \ * - \) irresolute and \(Y \) is \(\alpha \ * - T_2 \), then \(X \) is \(\alpha \ * - T_2 \).

(iii) If \(f \) is \(\alpha \ * - \) open and \(X \) is \(T_2 \), then \(Y \) is \(\alpha \ * - T_2 \).

Proof:

(i) Suppose \(f \) is \(\alpha \ * - \) continuous bijection and \(Y \) is \(T_2 \). Let \(x_1, x_2 \in X \), with \(x_1 \neq x_2 \). Let \(y_1 = f(x_1) \) and \(y_2 = f(x_2) \). Since, \(f \) is one to one, \(y_1 \neq y_2 \). Since, \(Y \) is \(T_2 \), there exists an open set \(U \) and \(V \) containing \(y_1 \) and \(y_2 \) respectively. Since, \(f \) is \(\alpha \ * - \) continuous bijection, \(f^{-1}(U) \) and \(f^{-1}(V) \) are disjoint \(\alpha \ * - \) open sets in \(X \) containing \(x_1 \) and \(x_2 \) respectively. Thus \(X \) is \(\alpha \ * - T_2 \).

(ii) Proof is similar to (i)

(iii) Suppose \(f \) is \(\alpha \ * - \) open bijection and \(X \) is \(T_2 \). Let \(y_1 \neq y_2 \in Y \). Since \(f \) is bijection, there exist \(x_1, x_2 \) in \(X \) such that \(y_1 = f(x_1) \) and \(y_2 = f(x_2) \) with \(x_1 \neq x_2 \). Since \(X \) is \(T_2 \), there exist disjoint open sets \(U \) and \(V \) in \(X \) such that \(x_1 \in U \) and \(x_2 \in V \). Since, \(f \) is \(\alpha \ * - \) open in \(Y \) such that \(y_1 = f(x_1) \in f(U) \) and \(y_2 = f(x_2) \in f(V) \). Since, \(f \) is a bijection, \(y_2 = f(x_2) \notin f(U) \) and \(y_1 = f(x_1) \notin f(V) \). Thus, \(Y \) is \(\alpha \ * - T_2 \).

Theorem 6.3.4: The following statements are equivalent for a topological space \((X, \tau) \).
(i) X is $\alpha^* T_2$.

(ii) Let $x \in X$ for each $x \neq y$, there exist a α^*-open U such that $x \in U$ and $y \notin \alpha^* \text{cl}(U)$

(iii) For each $x \in X$, $\cap \{ \alpha^* \text{cl}(U) : U \in \alpha^* O(X) \text{ and } x \in U \} = \{x\}$

Proof:

(i) \Rightarrow (ii):

Suppose X is a α^*-T$_2$. Let $x \in X$ and $y \in X$ with $x \neq y$. Then there exist disjoint α^*-open sets U and V such that $x \in U$ and $y \in V$. Since V is α^*-open, $X \setminus V$ is α^*-closed and $U \subseteq X \setminus V$. This implies that $\alpha^* \text{cl}(U) \subseteq X \setminus V$. Since, $y \notin X \setminus V$, $y \notin \alpha^* \text{cl}(U)$.

(ii) \Rightarrow (iii):

If $x \neq y$ then there exist a α^*-open set U such that $x \in U$ and $y \notin \alpha^* \text{cl}(U)$.
Hence $y \notin \cap \{ \alpha^* \text{cl}(U) : U \in \alpha^* O(X) \text{ and } x \in U \}$. This proves (iii).

(iii) \Rightarrow (i):

Let $x \neq y$ in X. Then $y \notin \cap \{ \alpha^* \text{cl}(U) : U \in \alpha^* O(X) \text{ and } x \in U \}$. This implies that there exist a α^*-open set U such that $x \in U$ and $y \notin \alpha^* \text{cl}(U)$. Then $V = X \setminus \alpha^* \text{cl}(U)$ is α^*-open and $y \in V$. Now, $U \cap V = U \cap (X \setminus \alpha^* \text{cl}(U)) \subseteq U \cap (X \setminus V) = \emptyset$. This proves (i)