LIST OF TABLES

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Title Name</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Table. 4.1 Concentration of Gallium nitrate and Indium nitrate in the deposition bath to obtain AgGa${x}$In${1-x}$Se$_2$ films of different composition</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>Table. 5.1 Crystallite size and thickness of AgInSe$_2$ films deposited at different substrate temperature</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>Table. 5.2 Composition of AgInSe$_2$ films deposited at different substrate temperatures</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>Table. 5.3 Microstructural parameters of AgGaSe$_2$ films deposited at different substrate temperatures</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>Table. 5.4 Composition of AgGaSe$_2$ films deposited at different substrate temperatures</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>Table. 5.5 Microstructural properties of AgGa${x}$In${1-x}$Se$_2$ films deposited at 80°C</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>Table. 5.6 Composition of AgGa${x}$In${1-x}$Se$_2$ films deposited at 80°C substrate temperature</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>Table 6.1 The values of oscillator energy (E_0), dispersion energy (E_d) and optical band gap (E_g) for silver indium selenide deposited at different substrate temperatures</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>Table 6.2 The values of single oscillator energy (E_0), dispersion energy (E_d) and optical band gap (E_g) for the AgGaSe$_2$ films deposited at different substrate temperatures</td>
<td>119</td>
</tr>
<tr>
<td></td>
<td>Table 6.3 The values of oscillator energy (E_0), dispersion energy (E_d) and optical band gap (E_g) for AgGa${x}$In${1-x}$Se$_2$ films of different composition</td>
<td>128</td>
</tr>
<tr>
<td>Table</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>7.1</td>
<td>Transport parameters of AgInSe$_2$ films deposited at different substrate temperature</td>
<td>130</td>
</tr>
<tr>
<td>7.2</td>
<td>Transport parameters of AgGaSe$_2$ films deposited at different substrate temperature</td>
<td>139</td>
</tr>
<tr>
<td>7.3</td>
<td>Transport parameters of AgGaxIn${1-x}$Se$_2$ films deposited at 80°C</td>
<td>148</td>
</tr>
<tr>
<td>8.1</td>
<td>Photovoltaic parameters of AgInSe$_2$ films deposited at 80°C and post annealed at 525°C (Intensity – 80 mW cm$^{-2}$)</td>
<td>165</td>
</tr>
<tr>
<td>8.2</td>
<td>Photovoltaic parameters of AgGaSe$_2$ films deposited at 80°C and post annealed at different temperature (Intensity – 60 mW cm$^{-2}$)</td>
<td>178</td>
</tr>
<tr>
<td>8.3</td>
<td>Photovoltaic parameters of AgGaxIn${1-x}$Se$_2$ electrodes (Intensity of illumination: 80 mW cm$^{-2}$)</td>
<td>198</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Title Name</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig.3.1</td>
<td>Schematic of the brush plating system</td>
<td>51</td>
</tr>
<tr>
<td>Fig.5.1</td>
<td>X-ray diffraction pattern of AgInSe$_2$ films deposited at different substrate temperatures (a) 30°C (b) 50°C (c) 70°C (d) 80°C</td>
<td>56</td>
</tr>
<tr>
<td>Fig.5.2</td>
<td>EDS spectrum of AgInSe$_2$ films deposited at 80°C substrate temperature</td>
<td>58</td>
</tr>
<tr>
<td>Fig.5.3</td>
<td>XPS spectrum of AgInSe$_2$ film deposited at 80°C substrate temperature</td>
<td>61</td>
</tr>
<tr>
<td>Fig.5.4</td>
<td>Atomic force micrographs of AgInSe$_2$ films deposited at different substrate temperature (a) 30°C (b) 50°C (c) 80°C (1.0 µm x 1.0 µm, Z = 10 nm)</td>
<td>62</td>
</tr>
<tr>
<td>Fig.5.5</td>
<td>X-ray diffraction pattern of AgGaSe$_2$ films deposited at different substrate temperature (a) 30°C (b) 50°C (c) 70°C (d) 80°C</td>
<td>64</td>
</tr>
<tr>
<td>Fig.5.6</td>
<td>EDAX spectrum of AgGaSe$_2$ films deposited at 80°C</td>
<td>68</td>
</tr>
<tr>
<td>Fig.5.7</td>
<td>X-ray Photoelectron spectra of AgGaSe$_2$ films deposited at 80°C substrate temperature</td>
<td>71</td>
</tr>
<tr>
<td>Fig.5.8</td>
<td>Atomic force micrograph of AgGaSe$_2$ films deposited at different substrate temperature (a) 80°C (b) 70°C (c) 50°C (d) 30°C Z – 20 nm (Area - 500 nm x 500 nm)</td>
<td>73</td>
</tr>
<tr>
<td>Fig.5.9</td>
<td>X-ray diffraction pattern of AgGa${0.1}$In${0.9}$Se$_2$ films deposited at 80°C substrate temperature</td>
<td>75</td>
</tr>
<tr>
<td>Fig.5.10</td>
<td>X-ray diffraction pattern of AgGa${0.2}$In${0.8}$Se$_2$ films deposited at 80°C substrate temperature</td>
<td>76</td>
</tr>
</tbody>
</table>
Fig. 5.11 X-ray diffraction pattern of AgGa$_{0.3}$In$_{0.7}$Se$_2$ films deposited at 80°C substrate temperature

Fig. 5.12 X-ray diffraction pattern of AgGa$_{0.4}$In$_{0.6}$Se$_2$ films deposited at 80°C substrate temperature

Fig. 5.13 X-ray diffraction pattern of AgGa$_{0.5}$In$_{0.5}$Se$_2$ films deposited at 80°C substrate temperature

Fig. 5.14 X-ray diffraction pattern of AgGa$_{0.6}$In$_{0.4}$Se$_2$ films deposited at 80°C substrate temperature

Fig. 5.15 X-ray diffraction pattern of AgGa$_{0.7}$In$_{0.3}$Se$_2$ films deposited at 80°C substrate temperature

Fig. 5.16 X-ray diffraction pattern of AgGa$_{0.8}$In$_{0.2}$Se$_2$ films deposited at 80°C substrate temperature

Fig. 5.17 X-ray diffraction pattern of AgGa$_{0.9}$In$_{0.1}$Se$_2$ films deposited at 80°C substrate temperature

Fig. 5.18 Variation of lattice parameter ‘a’ and ‘c’ with increase of gallium concentration (x) in AgGa$_x$In$_{1-x}$Se$_2$ films deposited at 80°C substrate temperature

Fig. 5.19 EDS spectrum of AgGa$_{0.1}$In$_{0.9}$Se$_2$ films deposited at 80°C substrate temperature

Fig. 5.20 EDS spectrum of AgGa$_{0.3}$In$_{0.7}$Se$_2$ films deposited at 80°C substrate temperature

Fig. 5.21 EDS spectrum of AgGa$_{0.5}$In$_{0.5}$Se$_2$ films deposited at 80°C substrate temperature
Fig. 5.22 EDS spectrum of AgGa$_{0.7}$In$_{0.3}$Se$_2$ films deposited at 80°C substrate temperature

Fig. 5.23 EDS spectrum of AgGa$_{0.9}$In$_{0.1}$Se$_2$ films deposited at 80°C substrate temperature

Fig. 5.24 XPS spectrum of AgGa$_{0.1}$In$_{0.9}$Se$_2$ films deposited at 80°C

Fig. 5.25 XPS spectrum of AgGa$_{0.3}$In$_{0.7}$Se$_2$ films deposited at 80°C

Fig. 5.26 XPS spectrum of AgGa$_{0.5}$In$_{0.5}$Se$_2$ films deposited at 80°C

Fig. 5.27 XPS spectrum of AgGa$_{0.7}$In$_{0.3}$Se$_2$ films deposited at 80°C

Fig. 5.28 XPS spectrum of AgGa$_{0.9}$In$_{0.1}$Se$_2$ films deposited at 80°C

Fig. 5.29 Atomic force micrograph of AgGa$_x$In$_{1-x}$Se$_2$ films of different composition Area – 1000 nm x 1000 nm, Z – 10 nm

Fig. 6.1 Transmission spectra of AgInSe$_2$ films deposited at different substrate temperatures (a) 30°C (b) 50°C (c) 70°C (d) 80°C

Fig. 6.2 Variation of refractive index with wavelength of AgInSe$_2$ films deposited at different substrate temperatures (a) 30°C (b) 50°C (c) 70°C (d) 80°C

Fig. 6.3 Tauc’s plot of AgInSe$_2$ films deposited at different substrate temperatures (a) 30°C (b) 50°C (c) 70°C (d) 80°C

Fig. 6.4 Variation of extinction co-efficient with wavelength of AgInSe$_2$ films deposited at different substrate temperatures (a) 30°C (b) 50°C (c) 70°C (d) 80°C

Fig. 6.5 Plots of $(n^2 - 1)^{-1}$ vs E^2 for AgInSe$_2$ films deposited at different substrate temperatures (a) 30°C (b) 50°C (c) 70°C (d) 80°C
Fig. 6.6 Transmission spectra of AgGaSe₂ films deposited at different substrate Temperature (a) 30°C (b) 50°C (c) 70°C (d) 80°C

Fig. 6.7 Variation of refractive index with wavelength of AgGaSe₂ films deposited at different substrate temperature (a) 30°C (b) 50°C (c) 70°C (d) 80°C

Fig. 6.8 Tauc’s plot of AgGaSe₂ films deposited at different substrate temperature (a) 30°C (b) 50°C (c) 70°C (d) 80°C

Fig. 6.9 Variation of extinction coefficient with wavelength of AgGaSe₂ films deposited at different substrate temperature (a) 30°C (b) 50°C (c) 70°C (d) 80°C

Fig. 6.10 (n² – 1) vs E² plots of AgGaSe₂ films deposited at different substrate temperature (a) 30°C (b) 50°C (c) 70°C (d) 80°C

Fig. 6.11 Transmission spectra of AgGaₓIn₁₋ₓSe₂ films of different Composition (a) x = 0.9 (b) x = 0.8 (c) x = 0.7 (d) x = 0.6 (e) x = 0.5 (f) x = 0.4 (g) x = 0.3 (h) x = 0.2 (i) x = 0.1

Fig. 6.12 Variation of refractive index with wavelength of AgGaₓIn₁₋ₓSe₂ films of different Composition (a) 0.2 (b) x = 0.4 (c) x = 0.6 (d) x = 0.8

Fig. 6.13 Tauc’s plot of AgGaₓIn₁₋ₓSe₂ films of different composition (a) x = 0.9 (b) x = 0.8 (c) x = 0.7 (d) x = 0.6 (e) x = 0.5 (f) x = 0.4 (g) x = 0.3 (h) x = 0.2 (i) x = 0.1

Fig. 6.14 Variation of band gap with increase of Ga concentration of AgGaₓIn₁₋ₓSe₂ films
Fig. 6.15 Variation of refractive index with wavelength of $\text{AgGa}_x\text{In}_{1-x}\text{Se}_2$ films of different composition (a) $x = 0.2$ (b) $x = 0.4$
(c) $x = 0.6$ (d) $x = 0.8$

Fig. 6.16 Variation of $(n^2 - 1)^{-1}$ vs E^2 plot of $\text{AgGa}_x\text{In}_{1-x}\text{Se}_2$ films of different composition Top to Bottom $x = 0.8$, $x = 0.6$, $x = 0.4$, $x = 0.2$

Fig. 7.1 Photocurrent – Intensity characteristics of AgInSe_2 films deposited at different substrate temperature (a) 30°C (b) 50°C
(c) 70°C (d) 80°C

Fig. 7.2 Photocurrent – voltage characteristics of AgInSe_2 films deposited at different substrate temperature (a) 30°C (b) 50°C (c) 70°C
(d) 80°C (Intensity – 10000 lux)

Fig. 7.3 Action spectra of AgInSe_2 films deposited at different substrate temperature

Fig. 7.4 Variation of photosensitivity with intensity of AgInSe_2 films deposited at different substrate temperature (a) 30°C (b) 50°C
(c) 70°C (d) 80°C

Fig. 7.5 Photocurrent – Intensity characteristics of AgGaSe_2 films deposited at different substrate temperature
(a) 30°C (b) 50°C (c) 70°C (d) 80°C

Fig. 7.6 Photocurrent – voltage characteristics of AgGaSe_2 films deposited at different substrate temperature (a) 30°C (b) 50°C (c) 70°C (d) 80°C (Intensity – 10000 lux)
Fig. 7.7 Action spectrum of AgGaSe$_2$ films deposited at different substrate temperature

Fig. 7.8 Photosensitivity – Intensity characteristics of AgGaSe$_2$ films deposited at different substrate temperature (a) 30°C (b) 50°C (c) 70°C (d) 80°C

Fig. 7.9 Variation of photocurrent with intensity of AgGa$_x$In$_{1-x}$Se$_2$ films of different composition (a) $x = 0.1$ (b) $x = 0.3$ (c) $x = 0.5$ (d) $x = 0.7$ (e) $x = 0.9$

Fig. 7.10 Variation of photocurrent with voltage of AgGa$_x$In$_{1-x}$Se$_2$ films of different composition (a) $x = 0.1$ (b) $x = 0.3$ (c) $x = 0.5$ (d) $x = 0.7$ (e) $x = 0.9$

Fig. 7.11 Variation of photocurrent with wavelength of AgGa$_x$In$_{1-x}$Se$_2$ films ($x = 0.1$)

Fig. 7.12 Variation of photocurrent with wavelength of AgGa$_x$In$_{1-x}$Se$_2$ films ($x = 0.3$)

Fig. 7.13 Variation of photocurrent with wavelength of AgGa$_x$In$_{1-x}$Se$_2$ films ($x = 0.5$)

Fig. 7.14 Variation of photocurrent with wavelength of AgGa$_x$In$_{1-x}$Se$_2$ films ($x = 0.7$)

Fig. 7.15 Variation of photocurrent with wavelength of AgGa$_x$In$_{1-x}$Se$_2$ films ($x = 0.9$)

Fig. 7.16 Variation of photosensitivity with intensity of AgGa$_x$In$_{1-x}$Se$_2$ films of different composition (a) $x = 0.1$ (b) $x = 0.3$ (c) $x = 0.5$ (d) $x = 0.7$ (e) $x = 0.9$
Fig. 8.1 Load characteristics of AgInSe$_2$ films deposited at different substrate temperature (a) 30°C (b) 50°C (c) 60°C (d) 70°C (e) 80°C

Fig. 8.2 Load characteristics of AgInSe$_2$ films deposited at 80°C post annealed at different temperatures (a) 450°C (b) 475°C (c) 500°C (d) 550°C (e) 525°C

Fig. 8.3 In J_{sc} vs V_{oc} plot of AgInSe$_2$ films deposited at 80°C and post annealed at 525°C

Fig. 8.4 Effect of photoetching time on V_{oc} and J_{sc} of AgInSe$_2$ films deposited at 80°C and post annealed at 525°C

Fig. 8.5 Load characteristics of AgInSe$_2$ films deposited at 80°C and post annealed at 525°C after photoetching for 80s.

Fig. 8.6 Mott Schottky plot of AgInSe$_2$ films deposited at 80°C and post annealed at 525°C after photoetching for 80s.

Fig. 8.7 Variation of photocurrent density with wavelength of AgInSe$_2$ films deposited at 80°C and post annealed at 525°C after photoetching for 80s.

Fig. 8.8 Raman spectra of AgInSe$_2$ films deposited at different substrate temperature (a) 30°C (b) 50°C (c) 70°C (d) 80°C

Fig. 8.9 Load characteristics of AgGaSe$_2$ films deposited at different substrate temperature (a) 30°C (b) 50°C (c) 60°C (d) 70°C (e) 80°C

Fig. 8.10 Load characteristics of AgGaSe$_2$ films deposited at 80°C and post heat treated in argon atmosphere at different temperature (a) 450°C (b) 475°C (c) 500°C (d) 525°C (e) 550°C
Fig. 8.11 In J_{sc} vs V_{oc} plot of AgGaSe$_2$ films deposited at 80°C and post heat treated in argon atmosphere at 525°C

Fig. 8.12 Variation of V_{oc} and J_{sc} with photoetching time of AgGaSe$_2$ films deposited at 80°C and post heat treated in argon atmosphere at 525°C

Fig. 8.13 Load characteristics of AgGaSe$_2$ films deposited at 80°C and post heat treated in argon atmosphere at 525°C after photoetching for 80s.

Fig. 8.14 Mott Schottky plots of AgGaSe$_2$ films deposited at 80°C and post heat treated in argon atmosphere at different temperature
(a) 475°C (b) 500°C (c) 525°C

Fig. 8.15 Variation of photocurrent density with wavelength of AgGaSe$_2$ films deposited at 80°C and post heat treated in argon atmosphere at 525°C

Fig. 8.16 Laser Raman spectra of AgGaSe$_2$ films deposited at different substrate temperatures (a) 30°C (b) 50°C (c) 70°C (d) 80°C

Fig. 8.17 Load characteristics of AgGa$_x$In$_{1-x}$Se$_2$ films of different composition (a) $x = 0.8$ (b) $x = 0.6$ (c) $x = 0.4$ (d) $x = 0.2$

Fig. 8.18 Load characteristics of AgGa$_{0.1}$In$_{0.9}$Se$_2$ films post heat treated at different temperatures in argon atmosphere (a) 450°C (b) 475°C (c) 500°C (d) 525°C

Fig. 8.19 Load characteristics of AgGa$_{0.2}$In$_{0.8}$Se$_2$ films post heat treated at different temperatures in argon atmosphere (a) 450°C (b) 475°C (c) 500°C (d) 525°C

Fig. 8.20 Load characteristics of AgGa$_{0.3}$In$_{0.7}$Se$_2$ films post heat treated at different temperatures in argon atmosphere (a) 450°C (b) 475°C (c) 500°C (d) 525°C
Fig. 8.21 Load characteristics of AgGa$_{0.4}$In$_{0.6}$Se$_2$ films post heat treated at different temperatures in argon atmosphere (a) 450°C (b) 475°C (c) 500°C (d) 525°C

Fig. 8.22 Load characteristics of AgGa$_{0.5}$In$_{0.5}$Se$_2$ films post heat treated at different temperatures in argon atmosphere (a) 450°C (b) 475°C (c) 500°C (d) 525°C

Fig. 8.23 Load characteristics of AgGa$_{0.6}$In$_{0.4}$Se$_2$ films post heat treated at different temperatures in argon atmosphere (a) 450°C (b) 475°C (c) 500°C (d) 525°C

Fig. 8.24 Load characteristics of AgGa$_{0.7}$In$_{0.3}$Se$_2$ films post heat treated at different temperatures in argon atmosphere (a) 450°C (b) 475°C (c) 500°C (d) 525°C (e) 500°C

Fig. 8.25 Load characteristics of AgGa$_{0.8}$In$_{0.2}$Se$_2$ films post heat treated at different temperatures in argon atmosphere (a) 450°C (b) 475°C (c) 500°C (d) 525°C

Fig. 8.26 Load characteristics of AgGa$_{0.9}$In$_{0.1}$Se$_2$ films post heat treated at different temperatures in argon atmosphere (a) 450°C (b) 475°C (c) 525°C (d) 500°C

Fig. 8.27 InJsc vs V_{oc} plot of AgGa$_{0.1}$In$_{0.9}$Se$_2$ films post heat treated at 500°C

Fig. 8.28 Variation of V_{oc} and J_{sc} of AgGa$_{0.1}$In$_{0.9}$Se$_2$ films post heat treated at 500°C for different duration of photoetching

Fig. 8.29 Load characteristics of AgGa$_{0.1}$In$_{0.9}$Se$_2$ films post heat treated at 500°C after photoetching for 80s.
Fig. 8.30 Mott-Schottky plot of films $\text{AgGa}_x\text{In}_{1-x}\text{Se}_2$ films of different composition post heat treated at 500°C (a) $x = 0.1$ (b) $x = 0.3$
(c) $x = 0.5$ (d) $x = 0.7$ (e) $x = 0.8$ (f) $x = 0.9$

Fig. 8.31 Variation of Photocurrent (J_{ph}) vs wavelength of (a) $\text{AgGa}_{0.8}\text{In}_{0.2}\text{Se}_2$
(b) $\text{AgGa}_{0.9}\text{In}_{0.1}\text{Se}_2$ films post heat treated at 500°C

Fig. 8.32 Variation of Photocurrent (J_{ph}) vs Wavelength of (a) $\text{AgGa}_{0.6}\text{In}_{0.4}\text{Se}_2$
(b) $\text{AgGa}_{0.7}\text{In}_{0.3}\text{Se}_2$ films post heat treated at 500°C

Fig. 8.33 Variation of Photocurrent (J_{ph}) vs Wavelength of (a) $\text{AgIn}_{0.5}\text{Ga}_{0.5}\text{Se}_2$
(b) $\text{AgGa}_{0.4}\text{In}_{0.6}\text{Se}_2$ films post heat treated at 500°C

Fig. 8.34 Variation of Photocurrent (J_{ph}) vs Wavelength of $\text{AgGa}_{0.1}\text{In}_{0.9}\text{Se}_2$ films post heat treated at 500°C

Fig. 8.35 Raman spectra of $\text{AgGa}_x\text{In}_{1-x}\text{Se}_2$ films of different composition
(a) $x = 0.9$ (b) $x = 0.7$ (c) $x = 0.5$ (d) $x = 0.3$ (e) $x = 0.2$ (f) $x = 0.1$