TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>List of Figures</th>
<th>Page numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Tables</td>
<td></td>
</tr>
<tr>
<td>List of Abbreviations</td>
<td></td>
</tr>
<tr>
<td>Chapter 1: Introduction and review of literature</td>
<td>1 - 32</td>
</tr>
<tr>
<td>1.1 Fabaceae: The legume family</td>
<td></td>
</tr>
<tr>
<td>1.2 Tribe Trifolieae</td>
<td></td>
</tr>
<tr>
<td>1.3 Genus Trigonella as a part of Trifolieae</td>
<td></td>
</tr>
<tr>
<td>1.3.1 Fenugreek: Trigonella foenum-graecum</td>
<td></td>
</tr>
<tr>
<td>1.3.2 Production of Fenugreek</td>
<td></td>
</tr>
<tr>
<td>1.3.3 Fenugreek breeding</td>
<td></td>
</tr>
<tr>
<td>1.3.4 Other Trigonella species</td>
<td></td>
</tr>
<tr>
<td>1.4 Molecular markers for germplasm characterization</td>
<td></td>
</tr>
<tr>
<td>1.5 Molecular Sequence Data</td>
<td></td>
</tr>
<tr>
<td>1.5.1 Molecular systematics and phylogenetics of Fabaceae</td>
<td></td>
</tr>
<tr>
<td>1.5.2 Molecular systematics and phylogenetics of the “vicioid Clade”</td>
<td></td>
</tr>
<tr>
<td>1.5.3 Generic affinities in tribe Trifolieae</td>
<td></td>
</tr>
<tr>
<td>1.5.4 Classification and phylogeny of genera in Trifolieae</td>
<td></td>
</tr>
<tr>
<td>1.5.5 Classification and phylogeny of genus Trigonella</td>
<td></td>
</tr>
<tr>
<td>1.6 Legume genomics</td>
<td></td>
</tr>
<tr>
<td>1.7 Medicinal resources of Fabaceae</td>
<td></td>
</tr>
<tr>
<td>1.7.1 Antimicrobials from Fabaceae</td>
<td></td>
</tr>
<tr>
<td>1.7.2 Antimicrobial activity of Trigonella</td>
<td></td>
</tr>
<tr>
<td>1.8 Trigonella as a source of diosgenin</td>
<td></td>
</tr>
<tr>
<td>1.9 Genesis and structure of my thesis</td>
<td></td>
</tr>
</tbody>
</table>

Chapter 2: Morphological validation of *Trigonella* germplasm 33-44

2.1 Introduction |

2.2 Material and Methods |

2.2.1 Details of the germplasm |

2.2.2 Morphological examination of the accessions |
2.3 Results
2.2.1 Correct assignment of species
2.2.2 Intraspecific morphological variation
2.2.3 Taxonomic reassignment
2.2.4 Misidentified accessions

2.4 Conclusions

Chapter 3: Assessment of Inter and Intraspecific diversity in *Trigonella* using molecular markers

3.1 Introduction

3.2 Materials and Methods
3.2.1 Plant material
3.2.2 DNA extraction
3.2.3 DNA quantification
3.2.4 PCR amplifications
3.2.4.1 ISSR amplifications
3.2.4.1 Cp SSR amplifications
3.2.5 Electrophoresis
3.2.5.1 Agarose gels for ISSR analysis
3.2.5.2 Denaturing polyacrylamide gels for Cp SSR analysis
3.2.6 Scoring and Data analysis
3.2.6.1 ISSR profiles
3.2.6.2 Cp SSR profiles

3.3 Results
3.3.1 ISSR polymorphism
3.3.2 Cp SSR polymorphism
3.3.4 Genetic relationships within the genus *Trigonella*
3.3.4.1 ISSR
3.3.4.2 Cp SSR

3.4 Discussion
3.4.1 ISSR Diversity
3.4.2 Cp SSR Diversity
3.4.3 Geographic distribution of intraspecific variability
3.4.4 Classification
3.4.5 Ancestry of cultivated *T. foenum-graecum*

Chapter 4: Phylogenetic analysis of *Trigonella* using nuclear ribosomal internal transcribed spacer and the plastid *trnL-F* sequences

4.1 Introduction

4.2 Material and Methods
4.2.1 Plant material
4.2.2 DNA extraction and quantification
4.2.3 Amplification and sequencing
4.2.4 Phylogenetic analysis

4.3 Results
4.3.1 Amplification and sequencing
4.3.2 Intraspecific sequence divergence
4.3.3 Sequence characteristics
4.3.4 Phylogenetic analysis
4.3.4.1 ITS analysis
4.3.4.2 *trnL-F* analysis
4.3.4.3 Combined analysis

4.4 Discussion
4.4.1 Intraspecific sequence divergence
4.4.2 Monophyly of *Trigonella* and *Melilotus*
4.4.3 Tribe Trifolieae
4.4.4 Classification
4.4.5 Pod character
4.4.6 Comparison of Maximum parsimony vs. Bayesian analysis
Chapter 5: Antibacterial activity in Trigonella: Characterization of a partially purified ethyl acetate fraction in Trigonella suavissima Lindl.

5.1 Introduction

5.2 Materials and Methods
 5.2.1 Plant material
 5.2.2 Determination of antibacterial activity
 5.3.2 Preliminary phytochemical analysis
 5.2.4 Preparation of plant extracts
 5.2.4.1 Aqueous extracts
 5.2.4.2 Polar and non polar extracts
 5.2.4.3 Saponin extracts
 5.2.4.4 Sapogenin extract
 5.2.5 Fractionation of extract
 5.2.6 Characterization of the antibacterial compound

5.3 Results
 5.3.1 Preliminary phytochemical analysis
 5.3.2 Antibacterial activity
 5.3.3 Fractionation of ethyl acetate extract
 5.3.4 LC-ESI-MS

5.6 Discussion
 5.6.1 Antibacterial activity in Trigonella
 5.6.2 Flavones as antibacterial agents
 5.6.3 Flavonoids as nod gene inducers

Chapter 6: Antifungal activity in Trigonella: Identification of a polyhydroxylated alkaloid from Trigonella spicata Sm.

6.1 Introduction

6.2 Materials and Methods
 6.2.1 Plant material
 6.6.2 Determination of antifungal activity
6.3.3 Preliminary phytochemical analysis
6.3.5 Preparation of plant extracts
6.2.5 Fractionation of toluene extract
6.2.6 ULPC-QTOF-MS and NMR
6.2.7 Characterization

6.3 Results
6.3.1 Antifungal activity
6.3.2 Purification of antifungal compound
6.3.3 Characterization of the antifungal compound

6.4 Discussion
6.4.1 Antifungal activity of Trigonella
6.4.2 Polyhydroxylated alkaloids and fungal growth inhibition

Chapter 7: Diosgenin in Trigonella 149-158

7.1 Introduction
7.2 Material and Methods
7.2.1 Plant material
7.2.2 Chemicals
7.2.3 Extraction of diosgenin
7.2.4 Instrumentation and chromatographic conditions
7.2.6 Calibration curve for diosgenin

7.3 Results
7.3.1 Calibration curve
7.3.2 Diosgenin content in aerial parts
7.3.3 Diosgenin content in seeds

7.4 Discussion

Chapter 8: Summary and future directions 159-165

8.1 Important research findings
8.1.1 Molecular diversity in Trigonella
8.1.2 Chemo diversity in Trigonella
8.2 Future directions