APPLICATIONS OF
MULTIPLE
HYPERGEOMETRIC
FUNCTION OF
SRIVASTAVA-DAOUS AND
THE SRIVASTAVA
POLYNOMIALS OF
SEVERAL VARIABLES IN A
PROBLEM INVOLVING
LAPLACE EQUATION
APPLIEDS OF MULTIPLE
HYPERGEOMETRIC FUNCTION OF SRIVASTAVA-
DAOUST AND THE SRIVSATAVA POLYNOMIALS
OF SEVERAL VARIABLES IN A PROBLEM
INVOLVING LAPLACE EQUATION

1. Introduction. Appell’s functions and the functions related
to them have many applications in Mathematical Physics ([13],[14],[15],
Srivastava, Gupta and Goyal [27] have discussed a problem on heat
conduction in a finite bar involving H-function of two variables of
Srivastava and Panda ([24],[25],[26]). Chandel and Gupta [4] have
discussed this problem involving generalized multiple hypergeometric
function of Srivastava and Daoust ([19],[20],[21]; also see Srivastava and
Karlsson [23], p.37, eqns (2.1) to (2.3)); Srivastava and Manocha [22,
p.64 eqns. (18) to (20)) Chandel-Bhargava [1] and Chandel-Gupta [5]
have discussed the problem on cooling of a heated cylinder. Chandel and
Yadava [2] have evaluated certain integrals involving multiple hypergeometric
function of Srivastava and Daoust ([19],[20],[21]) and their applications
have been given in solving a problem on heat conduction. Chandel and
Tiwari [6] also employed multiple hypergeometric function of Srivastava
and Daoust ([19],[20],[21]) in two boundary value problems. Chaurasia
and Patni [9] have discussed a problem on heat conduction involving the
product of multivariable H-function of Srivastava and Panda ([24],[25],[26])
and two generalized polynomials of Srivastava [17], while Chaurasia and
Gupta [10] have discussed a solution of partial differential equation of heat
conduction in a rod under Robin condition.
Recently, Chandel and Sengar [7] have discussed two boundary value problems on heat conduction involving the product of multivariable \(H \)-function of Srivastava-Panda ([24],[25],[26]) and several generalized polynomials of Srivastava [17] and their special cases have been discussed. Further Chandel and Sengar [8] have also discussed a problem on heat conduction under Robin condition involving the product of above multivariable \(H \)-function ([24],[25],[26]) and several generalized polynomials of Srivastava [17].

In continuation of the above study, the present Chapter is motivated by the frequent requirement of various properties of special functions which play a vital role in the study of potential theory, heat conduction and other allied problems in Quantum Mechanics. We first evaluate a finite integral involving the product of multiple hypergeometric function of Srivastava and Daoust ([19],[20],[21]; also see Srivastava and Karlsson [23, p.37, eqns. (2.1) to (2.3)]; Srivastava and Manocha [22, p.64, eqns.(18) to (20)] and Srivastava's polynomials of several variables [18] and make its applications to solve a problem involving Laplace equation. In end of the Chapter various special cases have also be discussed.

10.2 Main Integral

In this section, we evaluate the following integral very useful in our further investigations:

\[
\left(10.2.1 \right) \int_0^a \cos^{m-1}(\pi x/a) \cos(p \pi x/a) S^{A;B;\ldots;B^{(n)}}_{C;D;\ldots;D^{(n)}} \left(\begin{array}{c} (a) : \theta, \ldots, \theta^{(n)} \\ \psi, \ldots, \psi^{(n)} \end{array} \right)
\]

\[
\left[\left(\delta^{(n)} \right) : \phi^{(n)} \right]
\]

\[
\left[\left(\delta' \right) : \delta' \right]
\]

\[
S^{M_1,\ldots,M_r}_{N_1,\ldots,N_r} \left[y_1 \cos^{2p_1}(\pi x/a), \ldots, y_r \cos^{2p_r}(\pi x/a) \right] dx
\]

\[
= \frac{a}{\sqrt{\pi 2^p}} \sum_{n=0}^{M_1} \sum_{s=0}^{M_2} (-N_1)_{M_1} \ldots (-N_r)_{M_r} A(N_1, s_1, \ldots; N_r, s_r) \frac{y_1^{s_1}}{s_1!} \ldots \frac{y_r^{s_r}}{s_r!}
\]
\[S_{C^{+2D;...;D^{(e)}}}^{A^{+2B;...;B^{(e)}}} \left(\left[(a): \theta^{(a)} \right] \left[m + 2p, s_1 + ... + 2p, s_r : 2\sigma_1, ..., 2\sigma_n \right] \right) \]

\[\left[\left(c : \psi^{(a)} \right] \left[m - p + 2p, s_1 + ... + 2p, s_r : 2\sigma_1, ..., 2\sigma_n \right] \right) \]

\[\left(\left[\left(m - \frac{p}{2} \right) + p, s_1 + ... + p, s_r : \sigma_1, ..., \sigma_n \right] : \left[\left(b' \right) : \phi' \right] ; ..., \left[\left(b^{(ae)} \right) : \phi^{(ae)} \right] \right) \]

\[\left(\left[\left(m + p + 1 \right) \right] + \left(\left(m + p + 1 \right) \right) + p, s_1 + ... + p, s_r : \sigma_1, ..., \sigma_n \right] : \left[\left(d' \right) : \delta' \right] ; ..., \left[\left(d^{(ae)} \right) : \delta^{(ae)} \right] \right) \]

provided that \(m, p, \sigma_1, ..., \sigma_n, \rho_1, ..., \rho_n \) are positive integers such that \(m > p \) and \(m - p \) is a positive integer; \(S_{N_1, ..., N_r}^{M_1, ..., M_r} (x_1, ..., x_r) \) are Srivastava's polynomials of several variables [18] defined by

\[S_{N_1, ..., N_r}^{M_1, ..., M_r} (x_1, ..., x_r) = \sum_{s_1=0}^{N_1} \cdots \sum_{s_r=0}^{N_r} \left(-N_1 \right)_{M_1} \cdots \left(-N_r \right)_{M_r} A[N_1, s_1; ..., N_r, s_r] \frac{x_1^{s_1}}{s_1!} \cdots \frac{x_r^{s_r}}{s_r!} \]

where \(M_i, N_i \) (\(i = 1, ..., r \)) are arbitrary positive integers and the coefficients \(A[N_1, s_1; ..., N_r, s_r] \) are arbitrary parameters real or complex, while \(S_{C^{+2D;...;D^{(e)}}}^{A^{+2B;...;B^{(e)}}} \) is generalized multiple hypergeometric function of Srivastava and Daoust ([19],[20],[21])

\[1 + \sum_{j=1}^{C} \psi_j^{(i)} + \sum_{j=1}^{D} \delta_j^{(i)} - \sum_{j=1}^{A} \theta_j^{(i)} - \sum_{j=1}^{B} \phi_j^{(i)} > 0, i = 1, ..., n. \]

Proof. Making an appeal to the integral

\[\int_0^\infty \cos^n x/a \cos pnx/a \, dx = \frac{\Gamma(m+1)\Gamma\left(\frac{m-p+1}{2}\right)}{\sqrt{\pi} 2^p \Gamma(m-p+1)\Gamma\left(\frac{m+p+2}{2}\right)} \]

where \(m, p \) are positive integers such that \(m > p \) and \(m - p \) is an even integer, shows that

left hand side of (10.2.1)
\[\sum_{r_1=0}^{N_r} \ldots \sum_{r_s=0}^{N_s} (-N_1)_{M,\beta} \cdots (-N_r)_{M,\gamma, \ldots} \frac{Y_{r_1}}{s_{r_1}} \cdots \frac{Y_{r_s}}{s_{r_s}} \]

\[= \sum_{n=0}^{N_1} \ldots \sum_{n=0}^{N_s} \frac{\prod_{j=1}^{A} \Gamma(a_j + r_1 \theta_j + \ldots + r_s \theta_j^{(n)}) \prod_{j=1}^{B} \Gamma(b_j + r_1 \phi_j + \ldots + r_s \phi_j^{(n)})}{\prod_{j=1}^{C} \Gamma(c_j + r_1 \psi_j + \ldots + r_s \psi_j^{(n)}) \prod_{j=1}^{D} \Gamma(d_j + r_1 \delta_j + \ldots + r_s \delta_j^{(n)})} \]

\[\frac{z_1^n}{r_1!} \ldots \frac{z_s^n}{r_s!} \int \cos px/a \cos(\pi x/a)^{m-1+2\sigma_1r_1+\ldots+2\sigma_{m-1}r_{m-1}} dx \]

= right hand side of (10.2.1.).

10. 3 Main Problem. In this Section, we shall find the steady state temperature \(u(x,y)\) in a rectangular plate with following boundary conditions when no heat escapes from the lateral surface of the plate:

\[
\begin{array}{c}
\begin{array}{c}
\text{Insulated} \\
(0,0) \quad u(x,0)=0 \\
(0,b)
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
(0,0) \quad u(x,0)=0 \\
(a,b)
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\text{Insulated} \\
(0,0) \quad u(x,0)=0 \\
(a,b)
\end{array}
\end{array}
\]

(10.3.1) \[\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}, \quad 0 < x < a, \quad 0 < y < b,\]

with boundary conditions

(10.3.2) \[\left(\frac{\partial u}{\partial x} \right)_{x=0} = 0, \quad \left(\frac{\partial u}{\partial x} \right)_{x=a} = 0,\]

(10.3.3) \[u(x,0)=0, \quad 0 < x < a,\]

(10.3.4) \[u(x,b)=f(x), \quad 0 < x < a,\]

Now we consider the problem of determining \(u(x,y)\), when

(10.3.5) \[u(x,b)=f(x) = \cos^{-1}(\pi x/a) [A_{A', \ldots, A''} R_{C', \ldots, C''}] \left(\frac{(e) \cdot \theta', \ldots, \theta^{(n)}}{\psi', \ldots, \psi^{(n)}} \right).\]
\[\begin{align*}
&\left[\theta' \right]: \phi', \ldots; \left[\theta^{(n)} \right]: \phi^{(n)}; \\
&\left[(a') \right]: \delta', \ldots; \left[(a^{(n)} \right): \delta^{(n)}: z_1 \cos^{2\sigma_1}(\pi x/a), \ldots, z_n \cos^{2\sigma_n}(\pi x/a) \] \\
&\mathcal{S}_{N_1, \ldots, N_r}^{M_1, \ldots, M_r} \left[y_1 \cos^{2\rho_1}(\pi x/a), \ldots, y_r \cos^{2\rho_r}(\pi x/a) \right].
\end{align*} \]

10.4. Solution of the problem. In view of Zill [30, p. 468 (10.4.3)], the solution of the problem can be written as

\[u(x, y) = A_0 y + \sum_{p=1}^{\infty} A_p \sinh \frac{p\pi y}{a} \cos \frac{p\pi x}{a}. \]

Now our aim is to find \(A_0 \) and \(A_p \) \((p=1,2,3,\ldots) \).

For \(y=b \)

\[u(x, b) = f(x) = A_0 b + \sum_{p=1}^{\infty} A_p \sinh \frac{pb\pi}{a} \cos \frac{p\pi x}{a}, \]

which is half range expansion of \(f(x) \) in a cosine series. If we make the identifications \(A_0 b = a_0/2 \) and \(A_p \sinh \frac{pb\pi}{a} = a_n, \) \(n=1,2,3,\ldots \), then making an appeal to Zill [30, p.449 (10.2.2)], we obtain

\[(10.4.3) \quad A_0 = \frac{1}{ab} \int_0^b f(x) dx, \]

\[(10.4.4) \quad A_p = \frac{2}{a \sinh \frac{pb\pi}{a}} \int_0^b f(x) \cos \frac{p\pi x}{a} dx. \]

Making the use of (10.2.1) for \(p=0 \), we derive from (10.4.3), that

\[(10.4.5) \quad A_0 = \frac{1}{b \sqrt{\pi}} \sum_{s_1=0}^{[N_1/M_1]} \sum_{s_2=0}^{[N_2/M_2]} (-1)^{s_1} (-1)^{s_2} A[N_1, s_1; \ldots; N_r, s_r] \frac{y_1^{s_1}}{s_1!} \ldots \frac{y_r^{s_r}}{s_r!}, \]

\[\mathcal{S}_{C^{+1}:D^{+1}: \ldots: G^{(n)}}^{A_0 + B_0 + C_0 + \ldots + G^{(n)}} \left[(a): \theta', \ldots, \theta^{(n)} \right]; \left[m/2 + \rho_1 s_1 + \ldots + \rho_r s_r : \sigma_1, \ldots, \sigma_n \right]; \]

\[\left[(c): \psi', \ldots, \psi^{(n)} \right]; \left[(m+1)/2 + \rho_1 s_1 + \ldots + \rho_r s_r : \sigma_1, \ldots, \sigma_n \right]; \]

\[\left[(d'): \delta', \ldots; \left[(d^{(n)}): \delta^{(n)} \right] : z_1, \ldots, z_n \right], \]
provided that all conditions of (10.2.1) are satisfied, and

$$(10.4.6) \quad A_p = \frac{1}{2^{p-1} \sqrt{\pi \text{Sinh } \pi b/a}} \sum_{s_1=0}^{[N_1/M_1]} \sum_{s_2=0}^{[N_2/M_2]} \sum_{s_r=0}^{(-N_r)_{M_r,s_r}} A[N_1,s_1;...;N_r,s_r] \frac{y_1^{s_1}}{s_1!} ... \frac{y_r^{s_r}}{s_r!}$$

valid if all conditions of (10.2.1) are satisfied.

Now substituting the values of A_q and A_p from (10.4.5) and (10.4.6) respectively in (10.4.1); we derive the following required solution of the problem:

$$(10.4.7) \quad u(x,y) = \frac{y}{b \sqrt{\pi}} \sum_{s_1=0}^{[N_1/M_1]} \sum_{s_2=0}^{[N_2/M_2]} \sum_{s_r=0}^{(-N_r)_{M_r,s_r}} F[N_1,s_1;...;N_r,s_r] \frac{y_1^{s_1}}{s_1!} ... \frac{y_r^{s_r}}{s_r!}$$

valid if all conditions of (10.2.1) are satisfied.
\[A[N_1, s_1; \ldots; N_r, s_r] \frac{y_1^{y_1}}{s_1!} \ldots \frac{y_r^{y_r}}{s_r!} \]

\[S_{C \oplus D \ldots D}^{A \oplus B \ldots B} \left(\{a\} : \theta' \ldots, \theta^{(n)} \right) \left[m + 2p, s_1 + \ldots + 2p, s_r : 2\sigma_1, \ldots, 2\sigma_n \right], \]

\[S_{C \oplus D \ldots D}^{A \oplus B \ldots B} \left(\{c\} : \psi', \ldots, \psi^{(n)} \right) \left[m + 2p, s_1 + \ldots + 2p, s_r : 2\sigma_1, \ldots, 2\sigma_n \right], \]

\[\left[\begin{array}{c} m - \frac{p}{2} + p, s_1 + \ldots + p, s_r : \sigma_1, \ldots, \sigma_n \end{array} \right] \left[\begin{array}{c} (b') : \phi' \ldots ; (b^{(n)} : \phi^{(n)} \end{array} \right], \]

\[\left[\begin{array}{c} m + \frac{p}{2} + 1 + p, s_1 + \ldots + p, s_r : \sigma_1, \ldots, \sigma_n \end{array} \right] \left[\begin{array}{c} (d') : \delta' \ldots ; (d^{(n)} : \delta^{(n)} \end{array} \right], \]

provided that all conditions of (10.2.1) hold true.

10.5. Expansion Formula. For \(y = b \), the relation (10.4.7) gives the following expansion formula by an appeal to (10.3.5):

\[(10.5.1) \quad \cos^{m-1}(\pi x / a) S_{C \oplus D \ldots D}^{A \oplus B \ldots B} \left(\{a\} : \theta' \ldots, \theta^{(n)} \right), \]

\[\left[\begin{array}{c} (b') : \phi' \ldots ; (b^{(n)} : \phi^{(n)} \end{array} \right], \]

\[\left[\begin{array}{c} (d') : \delta' \ldots ; (d^{(n)} : \delta^{(n)} \end{array} \right], \]

\[S_{N_1 \ldots N_r}^{M_1 \ldots M_r} \left[y_1 \cos^{2n}(\pi x / a) \ldots, y_r \cos^{2n}(\pi x / a) \right] \]

\[= \frac{1}{\sqrt{\pi}} \sum_{s_1=0}^{N_1} \ldots \sum_{s_r=0}^{N_r} (-N_1)_{M_1} \ldots (-N_r)_{M_r} A[N_1, s_1; \ldots; N_r, s_r] \frac{y_1^{y_1}}{s_1!} \ldots \frac{y_r^{y_r}}{s_r!} \]

\[S_{C \oplus D \ldots D}^{A \oplus B \ldots B} \left(\{a\} : \theta' \ldots, \theta^{(n)} \right) \left[\begin{array}{c} m / 2 + p, s_1 + \ldots + p, s_r : \sigma_1, \ldots, \sigma_n \end{array} \right], \]

\[S_{C \oplus D \ldots D}^{A \oplus B \ldots B} \left(\{c\} : \psi', \ldots, \psi^{(n)} \right) \left[\begin{array}{c} m / 2 + p, s_1 + \ldots + p, s_r : \sigma_1, \ldots, \sigma_n \end{array} \right], \]

\[\left[\begin{array}{c} (b') : \phi' \ldots ; (b^{(n)} : \phi^{(n)} \end{array} \right], \]

\[\left[\begin{array}{c} (d') : \delta' \ldots ; (d^{(n)} : \delta^{(n)} \end{array} \right], \]

\[+ \frac{1}{\sqrt{\pi}} \sum_{p=1}^{n} \frac{1}{2^{p-1}} \cos \left(\frac{\pi px}{a} \right) \sum_{s_1=0}^{N_1} \ldots \sum_{s_r=0}^{N_r} (-N_1)_{M_1} \ldots (-N_r)_{M_r}. \]
\[
A[N_1, s_1; \ldots; N_r, s_r] \frac{y^{r_1}_{s_1}}{s_1!} \ldots \frac{y^{r_r}_{s_r}}{s_r!}
\]

\[
S_{C^2+D^2}^{A:B; \ldots; D(n)}(\frac{(a): \theta', \ldots, \theta^{(n)}}{(c): \psi', \ldots, \psi^{(n)}}; [m + 2\rho, s_{\theta_1} + \ldots + 2\rho, s_{\theta_n}, : 2\sigma_1, \ldots, 2\sigma_n],
\]

\[
[m - p + 2\rho, s_{\psi_1} + \ldots + 2\rho, s_{\psi_n}, : 2\sigma_1, \ldots, 2\sigma_n],
\]

\[
([m - p]/2 + \rho, s_{\theta_1} + \ldots + \rho, s_{\theta_n}, : \sigma_1, \ldots, \sigma_n]: \left[\begin{array}{c}
(b): \phi'\ldots; (b^{(n)}): \phi^{(n)}\end{array}\right]
\]

\[
([m + p + 1]/2 + \rho, s_{\psi_1} + \ldots + \rho, s_{\psi_n}, : \sigma_1, \ldots, \sigma_n]: \left[\begin{array}{c}
(d'): \delta'\ldots; (d^{(n)}): \delta^{(n)}\end{array}\right] z_1, \ldots, z_n,
\]

valid if all conditions of (10.2.1) are satisfied.

Finally specialize the parameters and arguments of \(S_{C^2+D^2}^{A:B; \ldots; D(n)} \) and \(S_{N_1, \ldots, N_r}^{M_1, \ldots, M_r} \) we can derive the results for various special functions of different variables.

REFERENCES

