BIBLIOGRAPHY

Abdalla, S.H. (1990)
Iron and folate status in Gambian children with malaria.

Hematological response to supplements of riboflavin and ascorbic acid in Nigerian young adults.

The first trials of the chemically synthesized malaria vaccine SPf66 : Safety, immunogenicity and protectivity.
Vaccine, 10 : 179 - 183.

Uric acid provides an antioxidant defense in humans against oxidant and radical caused aging and cancer : A hypothesis.

Angus, M.G.N., Fletcher, K.A. and Maegraith, B.G. (1971)
Studies on the lipids of Plasmodium knowlesi infected rhesus monkeys (Macaca mulatta). I. Changes in serum lipids.

Superoxide dismutase activity in red cells and liver of mice infected with Plasmodium berghei.

The viscosity and filterability of red cells in mice infected with Plasmodium berghei.

Alterations in the viscosity and deformability of red cells in patients with Plasmodium falciparum.

Serum cholinesterase activity in patients with malaria infection.
Serum cholinesterase levels in patients with carcinoma of the liver.

Red cell acetylcholinesterase activity in Plasmodium falciparum malaria.

The antioxidants as protectors of host stress organ injury in mice infected with
Plasmodium berghei.

Detoxification of xenobiotics by glutathione-S-transferase in erythrocytes: The
transport of the conjugate of glutathione and 1 chloro-2-4-dinitrobenzene.

Resistance to chloroquine by Plasmodium vivax in Irian Jaya, Indonesia.

Safety and efficacy of recombinant DNA plasmodium falciparum sporozoite
vaccine.
Lancet, 8545 : 1277-1280.

Serological relationship of tumor necrosis factor-inducing exoantigens of
Plasmodium falciparum and Plasmodium vivax.
Infect. Immun., 60(3) : 1241-1243.

Bauer, J.D. (1982)
In : Clinical Laboratory

Colorimetric estimation of vitamin A with trichloroacetic acid.

Beutler, E. (1967)
Glucose-6-phosphate dehydrogenase deficiency diagnosis, clinical and genetic implications.

Beutler, E. (1983)
Active transport of glutathione disulfide from erythrocytes.

Beutler, E., Duron, D. and Delly, B.M. (1963)
Improved method for the determination of blood glutathione.

Cachectin: More than a tumor necrosis factor.

Role of Plasmodium vivax in oxidation of haemoglobin in red cells of the host.

Reduction in erythrocytic GSH level and stability in Plasmodium vivax malaria.

Factors affecting the exchange of tocopherol between red blood cells and plasma.

The epidemiology of drug-resistant malaria.
Membrane lipid fatty acids and regulation of membrane bound enzymes.

Bray, R.S. and Graham, P.C.C. (1982)
The life-cycle of primate malaria parasites.

British Standards Institution (1966)
Specification for cyanmethaemoglobin solution for photometric haemoglobinometry.

Bruce-Chwatt, L.J. (1980)
In : Essential Malariology.
London, Heinemann Medical.

Bruce-Chwatt, L.J. (1981)
In : Chemotherapy of Malaria.

Bungener, W. (1965)

The current status of drug resistance in malaria.

Cameron, J.M. (1958)
Blood groups in tumours of salivary tissue.
Lancet, 1 : 239.

Carotenoids as cellular antioxidants.

Caraway, W.T. (1963)
Uric acid.
In : Standard Methods of Clinical Chemistry.

Hepatic superoxide dismutase, catalase and lipid peroxidation products in Mastomys natalensis infected with Plasmodium berghei.
Evidence for reactive oxygen intermediates causing hemolysis and parasite death in malaria.

Radical - mediated damage to parasites and erythrocytes in *Plasmodium vinckei* - infected mice after infusion of t-butyl - hydroperoxide.

Oxygen-derived free radicals in the pathogenesis of parasitic disease.

Clerc, M. (1992)
Antioxidant and / or free radical scavenger vitamins in tropical medicine.

Cogswell, F.B. (1992)
The hypnozoite and relapse in primate malaria.

Evidence for stability of glutathione peroxidase as a protective enzyme:
Studies of oxidative damage, renaturation and proteolysis.

Erythrocyte malondialdehyde release *in vitro*: A functional measure of vitamin E status.

Dacie, J.V. (1960)
In : Hemolytic anemias, Part I. The congenital anemias.

Enhanced lipid peroxidation in *Plasmodium falciparum* malaria.

Increased plasma lipid peroxidation in riboflavin deficient, malaria infected children.
Increased cerebrospinal fluid protein and lipid peroxidation products in patients with cerebral malaria.

Plasma antioxidants and lipid peroxidation products in falciparum malaria.

Serum vitamin A and E concentrations in acute falciparum malaria : Modulators or markers of severity ?

Vitamin E analysis methods for animal tissues.

Relation of red cell membrane properties to invasion by Plasmodium falciparum.

Spectrophotometric studies, spectrophotometric constants for common haemoglobin derivatives in human, dog and rabbit blood.

Dubowski, K.M. (1962)
An O-toluidine method for body fluid glucose determinations.

Catalase activity and red cell metabolism.
In : Haemoglobin and Red Cell Structure and Function.
Suppression of malaria infection by oxidant - sensitive host erythrocytes.

Dependence of Plasmodial glutathione metabolism on the host cell.

Malaria parasites adopt host cell superoxide dismutase.
Science, 221 : 764-766.

Feglar, G. (1952)
Relationship between reduced glutathione and spontaneous haemolysis in sheep blood.

The mode of action of chloroquine and related malarial schizontocides.

Fleck, A. and Myers, M.A. (1985)
Diagnostic and prognostic significance of the acute phase proteins.
In : The acute - phase response to injury and infection.

Increased vascular permeability : A major cause of hypoalbuminaemia in disease and injuries.
Lancet, 1 : 781-783.

Fletcher, K.A. and Maegraith, B.C. (1970)
Erythrocyte reduced glutathione in malaria.

Electrophoresis of glucose-6-phosphate and 6-phosphogluconate dehydrogenase in erythrocytes from malaria infected animals.

The osmotic fragility of erythrocytes in experimental malaria.
Antioxidant defenses and lipid peroxidation in human plasma.

Friedman, M.J. (1978)
Erythrocytic mechanism of sickle cell resistance to malaria.

Fritsch, B., Dieckmann, A., Menz, B., Hempelmann, E., Fritsh, K.G. and
Jung, A. (1987)
Glutathione and peroxide metabolism in malaria-parasitized erythrocytes.

The susceptibility of the malarial parasite *Plasmodium falciparum* to quinoline
-containing drugs is correlated to the lipid composition of the infected
erthrocyte membranes.
Biochem. Pharmacol., 46(3) : 365-374.

(1967)
Erythrocytic abnormalities in experimental malaria.

IQ and ABO blood groups.

Current concepts and new ideas on the mechanism of action of quinoline
containing antimalarias.

The mechanism of superoxide generation by the interaction of phenylhydrazine
with haemoglobin.

Golenser, J., Marva, E., Hamic, M., Hempelmann, E., Cohen, A., Har-El,
Free radicals and malaria.

Malaria vaccines.
Greenwood, B.M. (1991)
Common West African HLA antigens are associated with protection from severe malaria.

Metabolism of erythrocyte infected with malaria parasite and the action of antimalarial drugs.

Changes of membrane permeability due to extensive cholesterol depletion in mammalian erythrocytes.

Biochemical changes in red cells of patients suffering from malaria.

A new look at nonparasitized red cells of malaria - infected monkeys.

Transbilayer phospholipid asymmetry in Plasmodium knowlesi infected host cell membrane.
Science, 212 : 1047-1048.

Ceruloplasmin : Physiological and pathological perspectives.

Invasion of erythrocytes by malaria parasites. A cellular and molecular overview.

Hall, A.P. (1977)
The treatment of severe falciparum malaria.

Halliwell, B. (1988)
Albumin, an important extracellular antioxidant.
Ceruloplasmin and the superoxide radical.
Lancet. 2 : 556.

Lipid peroxidation, oxygen radicals, cell damage and antioxidant therapy.
Lancet, 1 : 1396-1397.

Origin of reactive oxygen species in erythrocytes infected with Plasmodium falciparum.

Harvey, J.W. and Kaneko, J.J. (1975)
Erythrocyte enzyme activities and glutathione levels of horse, cat, dog and man.

Henry, R.J., Chiamori, N., Jacobs, S.L. and Seaglove, N. (1960)
Determination of ceruloplasmin oxidase in serum.

Kinetic alterations in Michaelis - Menten parameters of human erythrocyte acetylcholinesterase in splenomegaly.

Holz, G.G. Jr. (1977)
Lipids and the malarial parasites.

Spontaneous splenic rupture in vivax malaria, case report.

Changes in membrane microviscosity of mouse red blood cells infected with Plasmodium berghei detected using n-(9-anthroloxy) fatty acid fluorescent probes.

On the mechanism of peroxidation of uric acid by hemoproteins.
The passage of vitamin C across the erythrocyte membrane.

T-cell responses in malaria.
APMIS, 100 : 95-106.

Oxidative stress and the redox status of malaria - infected erythrocytes.

Free radical and antioxidants in malaria.
In : Lipid-Soluble Antioxidants : Biochemistry and Clinical Applications.

International Committee for Standardization in Haematology (1965)

Irwin, M.I. and Hutchins, B.K. (1976)
A conspectus of research on vitamin C requirements of man.

Jacob, H.S. and Jandl, J.H. (1962)
Effects of sulphydryl inhibition on red blood cells. II. Studies in vivo.

Jacob, H.S. and Lux, S.E. (1968)
Degradation of membrane phospholipids and thiols in peroxide hemolysis:
Studies in vitamin E deficiency.
Blood, 32(4) : 549-568.

Vitamin E and stabilization of membrane lipid organisation in red blood cells
with peroxidative damage.

Reaction of bovine liver copper - zinc superoxide dismutase with hydrogen
peroxide. Evidence for reaction with hydrogen peroxide and peroxide ion \((\text{HO}_2^-)\)
leading to loss of copper.
John, M.B. (1972)
St.Louis, pp. 1198-1204.

Blood group () , malaria endemicity and susceptibility.

Karmen, A. (1955)
Assay of glutamic oxaloacetic transaminase in human blood serum.

Karunaweera, N.D., Grau, G.E., Gamage, P., Carter, R. and Mendis,
K.N. (1992)
Dynamics of fever and serum levels of tumor necrosis factor are closely
associated during clinical paroxysms in Plasmodium vivax malaria.

Kawo, N.G., Msengi, A.E., Swai, A.B.M., Chuwa, L.M., Alberti, K.G.M.M.
and McLarty, D.G. (1990)
Specificity of hypoglycaemia for cerebral malaria in children.

Erythrocyte membrane - bound enzymes in Mastomys natalensis during
Plasmodium berghei infection.

Plasmodium falciparum and Plasmodium coatney : Immunogenicity of "knob-
like protrusions" on infected erythrocyte membranes.
Exp. Parasitol., 42(1) : 157-165.

Kittl, E.M., Diridl, G., Lenhart, V., Newwald, C., Tomasits, J., Pichcer,
H. and Bauer, K. (1992)
HDL-cholesterol as a sensitive diagnostic criterion in malaria.

Infection of Anopheles darlingi fed on patients infected with Plasmodium vivax
before and during treatment with chloroquine in Costa Marques, Rondonia,
Brazil.
Kosower, N.S., Ziaser, Y. and Faltin, Z. (1982)
Membrane thiol-disulphide status in glucose-6-phosphate dehydrogenase
deficient red cells.

The activity of glutathione-S-transferases in various organs of the rat.

Antioxidant functions of carotenoids.

Krotoski, W.A., Garnham, P.C.C., Bray, R.S., Krotoski, D.M., Killick-
Observations on early and late post-sporozoite tissue stages in primate
malaria. I. Discovery of a new latent form of *Plasmodium cynomolgi* (the
hypnozoite) and failure to detect hepatic forms within the first 24 hours after
infection.

The acute phase response : An overview.
In : Acute Phase Proteins : Molecular Biology, Biochemistry and Clinical
Application. Mackiewicz, A., Kushner, I. and Baumann, H. (eds.), CRC Press,
Florida.

Impaired pentose phosphate shunt function in sickle cell disease : A potential
mechanism for increased Heinz body formation and membrane lipid
peroxidation.

Penetration of erythrocytes by merozoites of mammalian and avian malarial
parasites.

Changes in transaminase activity in plasma and liver of albino mice infected
with *Plasmodium berghei*.

Factors affecting the rate of coupling of bilirubin and conjugated bilirubin in
the Van den Bergh reaction.
Protective effect of dietary fish oil against malaria in vitamin E-deficient mice.
In: Chandra RK, ed. Health Effects of Fish and Fish Oils, St. John’s, Canada:
ARTS Biochemical Publishers, Ltd, 461-468.

Protective effect of linseed oil against malaria in vitamin E-deficient mice.

Erythrocyte deformability as affected by vitamin E deficiency and lead toxicity.
Ann NY Acad Sci. 355 : 227-239.

Crosslinking of membrane proteins in red blood cells from vitamin E-deficient
lead-poisoned rats.
The relationship between plasma triglycerides, cholesterol, total lipids and
lipid peroxidation products during human atherosclerosis.

Vitamin E and relationships among tocopherols in human plasma, platelets,
lymphocytes and red blood cells.

Leibowitz, J. and Cohen, G. (1968)
Increased hydrogen peroxide levels in glucose-6-phosphate dehydrogenase
deficient erythrocytes exposed to acetylphenylhydrazine.

The interactions of bilirubin with model and biological membranes.

Levander, O.A. (1992)
Selenium and sulfur in antioxidant protective systems Relationships with
vitamin E and malaria.

Malarial parasites and antioxidant nutrients.
Parasitology, 107 : 95-106.

Qinghaosu, dietary vitamin E, selenium and cod liver oil : Effect on the
susceptibility of mice to the malarial parasite Plasmodium yoelii.

Vitamin E protection against in vivo lipid peroxidation initiated in rats by
methyl ethyl ketone peroxide as monitored by pentane.

Protein measurement with the Folin’s phenol reagent.

Treatment of primaquine - resistant Plasmodium vivax malaria.
Lancet, 340 (8814) : 310.
Populational studies of Plasmodium vivax. I. The theory of sporozoite polymorphism and the epidemiological phenomena of vivax malaria.

Elevated glutathione accelerates oxidative damage to erythrocytes produced by aromatic disulfide.
Blood, 73(1) : 312-317.

Maegraith, B.G. (1976)
Malaria.

Role of free radicals in Plasmodium berghei infected Mastomys natalensis brain.

Manson, B. (1979)
Malaria and Babesiosis.

Int. J. Parasitol., 19(7) : 779-785.

Duffy blood types and vivax malaria in Ethiopia.

Transmission blocking immunity to human Plasmodium vivax malaria in an endemic population in Kataragama, Sri Lanka.

Miale, J.B. (1972)
The resistance factor to *Plasmodium vivax* in blacks. The Duffy-blood group
genotype Fy Fy.

Mishra, S.K., Mohanty, S., Das, B.S., Patnaik, J.K., Satpathy, S.K.,
Hepatic changes in *Plasmodium falciparum* malaria.

Misra, H.P. and Fridovich, I. (1972)
The role of superoxide anion in the autoxidation of epinephrine and a simple
assay for superoxide dismutase.

Misra, H.P. and Fridovich, I. (1972)
The generation of superoxide radical during the autoxidation of haemoglobin.

Mitchell, G.H., Hadley, T.J., Klotz, F.W., McGinnis, M.H. and Miller, L.H.
(1986)
Invasion of erythrocytes by *Plasmodium falciparum* malaria parasites.
Evidence for receptor heterogeneity and two receptors.

Decomposition of hydroperoxides derived from microsomes or lipoprotein by
 glutathione peroxidase and glutathione-S-transferase.

Mohan, K., Ganguly, N.K., Dubey, M.L. and Mahajan, R.C. (1992a)
Oxidative damage of erythrocytes infected with *Plasmodium falciparum*. An
 in vitro study.

Plasmodium falciparum induced perturbations of the erythrocyte antioxidant
system.

Mohanty, S., Mishra, S.K., Das, B.S., Satpathy, S.K., Mohanty, D.,
Altered plasma lipid pattern in falciparum malaria.
Morell, S.A., Ayers, V.E., Greenwalt, T.J. and Hoffman, P. (1964)
Thiols of the erythrocyte. I. Reaction of ethylmaleimide with intact erythrocytes.

Moshrovsky, S.H.D. (1973)
An attempt to explain differences in the type of incubation and the associated characteristics of the acute periods of malaria induced by various strains of Plasmodium vivax.

Enzymes.

Malaria and red cell genetic defects.
Blood, 74(4) : 1213-1221.

Oxygen free radicals in malaria.

Peroxidative changes in erythrocytic enzymes in Plasmodium berghei induced malaria in mice.

Antioxidants in relation to lipid peroxidation.

Ockenhouse, C.F. and Shear, H.L. (1984)
Oxidative killing of the intraerythrocytic malaria parasite Plasmodium yoelii by activated phagocytes.

Ohyashiki, T., Ushiro, H. and Mohri, J. (1985)
Effects of α-tocopherol on the lipid peroxidation and fluidity of porcine intestinal brush-border membranes.
High incidence of hypoglycaemia in African patients treated with intravenous
quinine for severe malaria.

Omaye, S.T., Turnbull, J.D. and Sauberlich, H.E. (1979)
Selected methods for the determination of ascorbic acid in animal cells, tissues
and fluids.

Ferriprotoporphyrin IX and cell lysis: A protective role for H_2O_2.

Packer, L. (1992)
Interaction among antioxidants in health and disease: Vitamin E and its redox
cycle.

Cholesterol determination with ferric chloride-uranil acetate and sulphuric
acid - ferrous sulphate reagents.

Pasvol, G. and Wilson, R.J.M. (1982)
The interaction of malaria parasites with red blood cells.

Pasvol, G., Weatherall, D.J. and Wilson, R.J.M. (1980)
The increased susceptibility of young red cells to invasion by the malarial
parasite *Plasmodium falciparum*.

Heterogeneity in filterability of erythrocytes from malaria (*Plasmodium
berghei*) - infected blood.
Experientia, 38 : 626-628.

Hepatic dysfunction in childhood malaria.
Arch. Dis. Childhood, 54 : 139-141.

The demonstration of ferrihemochrome intermediates in Heinz body formation
following reduction of oxyhaemoglobin A by acetylphenylhydrazine.
Chemotherapy and drug resistance in malaria.

Plasmodium falciparum: Stage-specific lactate production in synchronized cultures.

The importance of anaemia in cerebral and uncomplicated falciparum malaria:
Role of complications, dys erythropoiesis and iron sequestration.

Glutathione status in *Plasmodium vinckeii* parasitieren erythrozyten in abhängigkeit vom intraerythrozytären entwicklungsstadium des parasiten.
Tropenmed. Parasitol., 26 : 405-416.

Pinder, R.M. (1973)
In : Malaria. Bristol, Scientechnia, pp.20-58.

Inhibition of lipid peroxidation by superoxide dismutase and ceruloplasmin.
Biokhimiiia, 48(7) : 1129-1134.

Polozok, E.S. (1971)
Relapses of imported vivax malaria and effectiveness of their treatment with quinocide.

Ponoinetskii, V.D., Pokrovskii, V.V., Kladukhina, L.S.
(1981)
Oxidative and antioxidative systems of the blood in mechanisms for protecting and injuring erythrocytes in mice infected with *Plasmodium berghei*.

Blood stage antimalarial efficacy of primaquine in *Plasmodium vivax* malaria.

Reinhold, J.G. (1953)
Reitman, S. and Frankel, S. (1957)
A colorimetric method for the determination of serum glutamic oxaloacetic, glutamic pyruvic transaminase.

Erythropoietin production in virulent malaria.
Infect. Immun., 10(4) : 831-833.

Romanha, A.J. (1986)
Carbohydrate metabolism of malarial parasites.
Memories do Instituto Oswaldo Cruz, 81 (Suppl. 2) : 149-152.

Persistence of drug resistant malaria parasites.

Roth, E.F. (1987)
Malarial parasite hexokinase and hexokinase - dependent glutathione reduction in Plasmodium falciparum - infected human erythrocytes.

Glutathione stability and oxidative stress in Plasmodium falciparum infection in vitro : Responses of normal and G6PD-deficient red cells.

The enzymes of the glycolytic pathway in erythrocytes infected with Plasmodium falciparum malaria parasites.
Blood, 72(6) : 1922-1925.

Selenium : Biochemical role as a component of glutathione peroxidase purification and assay.
Science, 179 : 588-590.

Relationship between serum lipids, lipoproteins and pseudocholinesterase during organophosphate poisoning in rabbits.
Int. J. Biochem., 16 : 687-690.

Serum biochemical changes in malarial infection.
Sasaki, T. and Matsui, S. (1972)
Effect of acetic acid concentration on the colour reaction in the O-toluidine boric acid method for the blood glucose determination.
Rinsho Kagaku, 1 : 346-353.

Oxidative stress as a defense mechanism against parasitic infections.

Erythrocyte membrane vacoule formation in hereditary spherocytosis.

Sedlack, J. and Lindsay, R.H. (1968)
Estimation of total, protein bound and non-protein sulphydryl groups in tissues with Ellman’s reagent.

Seed, T.M. and Kreier, J.P. (1972)
Plasmodium gallinaceum : Erythrocyte membrane alterations and associated plasma changes induced by experimental infections.

Plasmodium berghei : Osmotic fragility of malaria parasites and mouse host erythrocytes.

Biochemical alteration in *Plasmodium vivax* infected malarial patients before and after radical treatment.
Ind. J. Malarial., 29 : 103-111.

Sergacheva, Y.Y., Sokhanenkova, T.L., Sopronov, F.F. and Lurie, A.A. (1986a)
Effects of vitamins D and E concentration on the course of malaria infection in mice.

Sergacheva, Y.Y., Sokhanankova, T.L., Sopronov, F.F. and Lurie, A.A. (1986b)
Attenuation of *Plasmodium berghei* strain by repated passage in mice exposed to vitamin E load.
Liver function tests in Plasmodium vivax malaria in South Madras area.
Arogya J. Health Sci., 7 : 137-139.

Biochemical changes at different levels of parasitaemia in Plasmodium vivax malaria.

Sharma, R.C., Gautam, A.S., Orlov, V. and Sharma, V.P. (1990)
Relapse pattern of Plasmodium vivax in Kheda district, Gujarat.
Ind. J. Malariol., 27(2) : 95-99.

Biochemical studies on mouse liver following Plasmodium berghei infection.

Sharma, A. (1993)
Subcellular distribution of superoxide dismutase and catalase in human malarial parasite Plasmodium vivax.

Sherman, I.W. (1979)
Biochemistry of Plasmodium (malarial parasites).

Antimalarial drugs : Metabolism.

Shortt, H.E. and Garnham (1948)
The pre-erythrocytic development of Plasmodium cynomolgi and Plasmodium vivax.

Lipid peroxidation in Plasmodium falciparum - parasitized human erythrocytes.
Sinden, R.E. and Smith, J.E. (1982)
The role of the Kupffer cell in the infection of rodents by sporozoites of Plasmodium yoelii nigeriensis. Uptake of sporozoites by perfused liver and the establishment of infection in vitro.

Sinha, A.K. (1972)
Colorimetric assay of catalase.

Sinton, J.A. (1931)
Studies on malaria with special reference to treatment XV. Does the strain of parasite influence cure?

Slatter, T.F. and Block, G. (1991)
Antioxidant vitamins and β carotene in disease prevention.

Status of oxidative stress and antioxidant defences during Plasmodium knowlesi infection and chloroquine treatment in Macaca mulatta.
Int. J. Parasitol., 22(2) : 243-245.

Stevenson, M.M. (1990)

Endogenous antioxidant defences in human blood plasma.

Oxidative stress and protective mechanisms in erythrocytes in relation to Plasmodium vinckei load.

Stocker, R., Hunt, N.H. and Weidemann, M.J. (1986a)
Antioxidants in plasma from mice infected with Plasmodium vinckei.

Protection of vitamin E from oxidation by increased ascorbic acid content within Plasmodium vinckei - infected erythrocytes.
Lipids from *Plasmodium vinckei* - infected erythrocytes and their susceptibility to oxidative damage.
Lipids, 22(1) : 51-57.

Bilirubin is an antioxidant of possible physiological importance.

Stocker, R., Glazer, A.N. and Ames, B.N. (1987c)
Antioxidant activity of albumin-bound bilirubin.

Stocks, J., Gutteridge, J.M.C., Sharp, R.J. and Dormandy, T.L. (1974)
Assay using brain homogenate for measuring the antioxidant activity of biological fluids.

Interactions between vitamin A deficiency and *Plasmodium berghei* infection in the rat.

Stryer, L. (1988)

A longitudinal study on relations of retinol with parasitic infections and the immune response in children of Kikwawxila village, Tanzania.
Acata Tropica, 14 : 213-237.

Effect of radical treatment on erythrocyte lipid peroxidation in *Plasmodium vivax* - infected malaria patients.
Biochem. Int., 25(2) : 211-220.

Glucose-6-phosphate dehydrogenase deficiency and malaria. A study on North Madras population.
Suresh, T.M. and Selvam, R. (1992)
Biochemical alterations in *Plasmodium vivax* infected patients before and after radical treatment.

Changes in glutathione metabolic enzymes in erythrocytes of *Plasmodium vivax* infected patients.

Superoxide dismutase in mouse red blood cells infected with *Plasmodium berghei*.

Thiocystic acid and dihydrolipoic acid are novel antioxidants which interact with reactive oxygen species.

Hemoglobin denaturation and iron release in acidified red cell lysate: A possible source of iron for intraerythrocytic malaria parasites.
Exp. Parasitol., 77(3) : 261-272.

Tanabe, K. and Shimada, K. (1990)
Clinical evaluation of antimalarial drugs.
Kansenshogaku-Zasshi, 64(6) : 668-673.

Clinical problems of malaria in the USSR over 50 years.

Antioxidants can prevent cerebral malaria in *Plasmodium berghei*-infected mice.

The acute phase response and vitamin A status in malaria.

Plasma tocopherol levels and the susceptibility of erythrocytes to Heinz body formation.
Protective immunity produced by the injection of x-irradiated sporozoites of P. berghei. V. In vitro effects of immune serum on sporozoites.

Phospholipid biosynthesis in synchronous Plasmodium falciparum cultures.
J. Protozoo., 29 : 258-263.

Vogel, F. (1968)
ABO blood groups and leprosy.

Voller, A. (1975)
Immunopathology of malaria.

Vorhaus, L., Scuedamore, H. and Kark, R. (1950)
Measurement of serum cholinesterase activity: Useful tool in the study of diseases of the liver and biliary system.
Gastroenterol., 15 : 304-311.

The relative contributions of vitamin E, urate, ascorbate and proteins to the total peroxyl radical-trapping antioxidant activity of human blood plasma.

The anaemia of Plasmodium falciparum malaria.

Weiner, A.S. (1943)

Neutrophil-mediated methemoglobin formation in the erythrocyte.

Comparison of artemether and chloroquine for severe malaria in Gambian children.
Severe hypoglycaemia and hyperinsulinaemia in falciparum malaria.

Amplification of a gene related to mammalian mdr genes in drug-resistant
Plasmodium falciparum.
Science, 244 : 1184.

Currently important antimalarial drugs.

Studies of hemoglobin denaturation and Heinz body formation in unstable
hemoglobin.

Wintrobe (1933)
Macroscopic examination of the blood.

Wittenberg, J.B., Wittenberg, B.A., Peisach, J. and Blumberg, W.E.
(1970)
On the state of iron and the nature of the ligand in oxyhaemoglobin.

In : Practical Clinical Haematology Interpretation and Techniques. Wolf, P.L.

Wolff, S.P. and Dean, R.T. (1986)
Fragmentation of proteins by free radicals and its effect on their susceptibility
to enzymic hydrolysis.

Anopheles gambiae - Selective feeding according to ABO blood group.

Woodruff, A.W., Ansdell, V.E. and Pettit, L.E. (1979)
Cause of anaemia in malaria.
World Health Organisation (1964)
The terminology of malaria and malaria eradication.

World Health Organisation (1973)
Chemotherapy of malaria and resistance to antimalarials.

World Health Organisation (1983)
World malaria situation 1981.
Weekly epidemiological records, reprint from Nos.25-30.

The biology of malaria parasites.

Distinct lipid compositions of parasite and host cell plasma membranes from
Plasmodium chabaudi - infected erythrocytes.

Yap, G.S. and Mary, M.S. (1994)
Inhibition of in vitro erythropoiesis by solube mediators in Plasmodium chabaudi AS malaria : Lack of a major role for interleukin 1, tumour necrosis factor alpha, and gamma interferon.

Young, M.D. (1970)

Yuthavong, Y. (1985)
Alterations of the erythrocyte membrane in malaria infection.

The relationship of phosphorylation of membrane proteins with the osmotic fragility and filterability of Plasmodium berghei infected mouse erythrocytes.

Zhang, Y., Konig, I. and Schirmer, R.H. (1988)
Glutathione reductase deficient erythrocytes as host cells of malaria parasites.