Specific changes in the glycoprotein components of serum amyloid in pregnancy.

Calcium oxalate renal calculi induced in rats by \(B_6 \) deficiency.
Am. J. Pathol. 33, 671-72.

Production of calcium oxalate calculi in vitamin \(B_6 \) deficient rats.
Lab. Invest. 2, 7.

Modified Polia's method for the measurement of urinary creatinine and creatine.

Proteins and other bio-colloids of urine in health and calculous disease I - electrophoretic studies at pH 4.5 and 6.6 of components soluble in \(HCl \).

Organic matrix of urinary calculi.
Acta radiol. 22, 543-60.

Determination of glycogen, lipids and proteins in hepatic needle biopsy.

The scope of the transmission reaction in animal tissues.

Interactions among magnesium, vitamin \(B_6 \), sulphur and phosphorus in the formation of kidney stones in the rat.
J. Nutr. 61, 60-66.
 A simple method for the isolation and purification
 of total lipids from animal tissues.
 J. Biol. Chem. 226, 497.

 The colorimetric determination of phosphorus.
 J. Biol. Chem. 66, 379-400.

 Prevention of oxalate and phosphate lithiasis by
 Alanine.
 Invest. Urol, 12, 017, 50-53.

 Endogenous oxalate synthesis and Glycine, Serine
 decarboxyl pyridoxine, inter-relationships in Vitamin B6
 deficient rats.
 J. Biol. Chem. 234, 2391-93.

 Production of urinary calculi in Vitamin B6 deficient
 male, female and castrated male rats.

 Effect of daily magnesium oxide on the Vitamin B6
 administration to patients with recurring calcium
 oxalate kidney stones.

 Excretion of urinary metabolites in calcium oxalate
 urolithiasis - Effect of tryptophan and B6 administrating

 Dietary magnesium, Calcium, Vitamin B6, and experimental
 nephropathies in rats; calcium oxalate calculi, apatite
 nephrocalcinosis.
 J. Nutr. 72, 206.

 Calcium oxalate renal calculi induced in rats by B6
 deficiency.
 Amer. J. Pathol. 32, 671-2.
Polyunsaturated acid in hypercholesterolemia, induced in pyridoxine deficient rats.

Alterations in the blood fatty acids in single and combined deficiencies of essential fatty acids and Vitamin E, in monkeys.
Arch. Biochem. Biophys. 44, 405-16.

21. Hollman, L. and Burns, J.J. (1938)
Metabolism of L-ascorbic acid - 10 in man.
J. Biol. Chem. 210, 929-930.

22. Hooper, J. (1906)

The oxidation of glycemic acid by liver enzyme.
J. Biol. Chem. 210, 269-290.

A colorimetric method for the estimation of cholesterol.

25. Leodsdale, L. and Sutor, D.J. (1969)

Calcium oxalate lithiasis produced by pyridoxine deficiency and inhibition with high magnesium diet.
Invest. Urol. 4, 133-142.

Experimental oxalate lithiasis produced with ethylene glycol.
Invest. Urol. 4, 143.
External factors in the genesis of urolithiasis.
Renal stone research symposium, ed. by Hodgkinson, A. and Nordin, B.L.O.J.A.
Churchill Ltd. p.59-64.

29. McCarrison, R. (1931)
The causation of stones in India.

Chemical Composition of urinary calculi in preschool children and of the drinking water in the Armenian SSR.
Chem. Abstr. 67, No.98467 V.

Effect of decy pyridoxine induced Vitamin B, deficiency on polyunsaturated fatty acid metabolism in human beings.

Estimation of Magnesium in serum using titan yellow.
J. Clin. Pathol. 19, 162.

Renal stone of calcium phosphate. Physicochemical basis for this formation. Renal stone research symposium,
ed. by Hodgkinson and Nordin, B.L.O.

Studies in urolithiasis I. The composition of Urinary calculi.
J. Urol. 57, 949-91.

Nutritional aspects of calculous disease of the urinary tract.

36. Randall, A. (1957)
The origin and growth of renal calculi.

37. Ratner, S., Nejite, V. and Green, D.L. (1944)
Glycine oxidase.
The effect of P deficiency in rats on the metabolism of oxalic acid precursors.
J. Biol. Chem. 238, 1290–94.

Chemical composition of urinary calculi in Madras area.

Nutritional status with respect to pyridoxine in recurrent calcium oxalate stone formers. - paper
presented at the 9th urological conference held in Madras - 1974.

42. Varalakshmi, G., Radhakshasugasundaram, K., and Venugopal, A. (1979)
Alterations in mucopolysaccharides in the kidneys of stone forming rate - unpublished data.

Blood lipids in renal stone disorder.

44. Varalakshmi, G., Radhakshasugasundaram, K., and Venugopal, A. (1977)
α-keratanoid and glycoproteins in renal stone patients.
Indian. J. Surg. 39, 487.

45. Vermeulen, G.V., Lyon, E.S. and Gill, W.B. (1964)
Artificial urinary concretions.
Invest. Urol. 1, 370.

Mechanism of fatty acid synthesis.

47. Weinhouse, S. and Friedmans, H. (1951)

 In amino acid metabolism, ed. by McIlroy, W.R. and

49. Witten, P.V. and Holman, R.J. (1952)
 Polyethylen glycol metabolism: effect of pyridoxine
 on essential fatty acid conversion.
 Arch. Biochem. 41, 266.

50. Wissler, R.J. (1955)
 Determination of serum glycoproteins.
 Methods of Biochemical analysis ed. by Clink, D.

51. Wright, R.J. and Hodgkinson, A.
 Oxalic acid, Calcium and phosphorus in the renal papilla
 of normal and stone forming rats. (1972)

52. Sarwinski, P.M. and Hodgkinson, A. (1969)
 Some factors influencing the urinary excretion of
 oxalic acid in man.

53. Sinser, E.R. etal (1971)