CONTENTS

CHAPTER 1: INTRODUCTION

1.1 Introduction to Photoacoustic Spectroscopy 2
1.2 Principle and Theory of Photoacoustic Spectrometer 2
 1.2.1 Principle 2
 1.2.2 Rosencwaig and Gersho Theory (R-G Theory) 4
 1.2.3 Special Cases 13
1.3 Applications of Photoacoustic Spectroscopy 16
 References 24

CHAPTER 2: REVIEW OF EARLIER TECHNIQUES IN DESIGN AND
DEVELOPMENT OF PHOTOACOUSTIC SPECTROMETER

2.1 Introduction 31
2.2 Analog Techniques 31
2.3 Digital Techniques 57
 References

CHAPTER 3: HARDWARE AND SOFTWARE FEATURES OF
MICROCONTROLLER BASED PHOTOACOUSTIC
SPECTROMETER

3.1 Introduction 74
3.2 Block Diagram of Photoacoustic Spectrometer 74
 3.2.1 Radiation Source 77
 3.2.2 Photoacoustic Cell 79
 3.2.3 Acoustic Signal Detector 83
 3.2.4 Lock-in Amplifier 88
 3.2.4.1 Pre-Amplifier 88
 3.2.4.2 Band-Pass Filter 90
 3.2.4.3 Narrow Band-Pass Filter 93
 3.2.4.4 Amplifier/Attenuator 93
Chapter 3: Microcontroller Based Phase Sensitive Detector

3.2.4.5 Microcontroller based Phase Sensitive Detector 97

3.3 Working of the Photoacoustic Spectrometer 115

3.4 Software Features 120

3.4.1 Embedded ‘C’ program for Photoacoustic Spectrometer 126

References

Chapter 4: Microcontroller Based Temperature Control System

4.1 Introduction 148

4.2 Hardware Features 148

4.2.1 Sensor 150

4.2.2 Constant Current Source 151

4.2.3 Instrumentation Amplifier 151

4.2.4 Microcontroller 153

4.2.5 Zero-Cross Detector 154

4.2.6 Opto-Isolator 154

4.2.7 Actuator 155

4.3 Software Features 160

4.4 Results and Discussions 172

References

Chapter 5: Hardware and Software Features of Photoacoustic Spectrometer (Non Resonating Type) for Thermal Diffusivity Measurements

5.1 Introduction 176

5.2 Block diagram of Photoacoustic Spectrometer (Non-Resonating Type) 177

5.2.1 Photoacoustic cell 179

5.2.2 Lock-in amplifier 181

5.2.2.1 Pre-amplifier and low-pass filter 181
CHAPTER 6: RESULTS AND DISCUSSIONS (RESONATING TYPE PHOTOACOUSTIC SPECTROMETER)

6.1 Introduction 215
6.2 Standardization of the Cell 215
6.3 Frequency Response of the Cell 215
6.4 Application of PAS for Phase Transition Studies 217
6.5 Conclusion 231
6.6 Future Scope for the Present Work 232

References

List of Publications