Headings

Acknowledgement: 2

List of Abbreviations: 4

Resume: 6

Chapter I: Review of literature

1. Introduction
 1.1 Nanoparticles, Nanosciences and Nanotechnology: I-3
 1.2 Dimension of nanoparticles: I-3
 1.3 Common strategies of synthesis of NP: I-4
 1.4 Stability of NPs:
 1.4A Electrostatic stabilization: I-5
 1.4B Steric stabilization: I-5
 1.4C Stabilization by ionic liquid: I-6
 1.4D Stability against oxidation: I-6

1.5 Basics of NP: Properties with size and shape: I-5
 1.5A Electrostatic stabilization: I-5
 1.5B Steric stabilization: I-5
 1.5C Stabilization by ionic liquid: I-6
 1.5D Stability against oxidation: I-6

1.6 Properties of nanoparticles: I-7
 1.6A Electrostatic stabilization: I-7
 1.6B Steric stabilization: I-7
 1.6C Stabilization by ionic liquid: I-8
 1.6D Stability against oxidation: I-8

1.7 Application of NPs in biology: I-8
 1.7.1 Nanoparticles as Bio-sensing devices: I-8
 1.7.2 Nanoparticles mediated drug delivery: I-9
 1.7.3 Nanoparticles mediated tissue engineering: I-9
 1.7.4 Nanoparticles mediated in vivo imaging: I-10
 1.7.5 Nanoparticles mediated bio molecule's delivery: I-10
 1.7.6 Nanoparticles mediated gene delivery system: I-11
 1.7.7 Anticancer and cyto-toxic activity of metallic nanoparticles: I-18
 1.7.8 Antimicrobial activity of different metallic nanoparticles: I-20

1.8 Effects of nanoparticles on the DNA: I-27
1.9 Objective of this study: I-32

Chapter II: Material & methods

2.2 Bacteria, Cells and Plasmid: II-6
2.2 Media, Buffers, Reagents and Fluorescent dyes: II-6
2.3 To characterize nanoparticles (NPs)

2.3.1 Determination of light absorption property of NPs by UV-Visible spectro-photometry

2.3.2 Determination of light emission property of NPs by spectro-fluorimetry

2.3.3 Determination of size, stability and mol. wt. of NPs by dynamic light scattering (DLS) technique

2.3.4 Determination of crystallinity and crystal size of NPs by X-ray diffraction (XRD).

2.3.5 Determination of actual size and shape of NPs by different high-end microscopic techniques

2.3.5A Field emission electron microscopic (FESEM) technique

2.3.5B High resolution transmission electron microscopic (HRTEM) technique

2.3.5C Atomic force microscopic (AFM) technique

2.3.6 Determination of thermal property of NPs by differential thermal-thermo gravimetric (DT-TG) analysis

2.3.7 Determination of chemical composition of NPs by energy-dispersive X-ray spectroscopy (EDX)

2.3.8 Determination of chemical bonds in NPs by Fourier transforms infrared (FTIR) spectroscopy.

2.3.9 Determination of chemical states of metallic NPs by X-ray photoelectron spectroscopic (XPS) technique

2.3.10 Determination of unpaired electron states of metallic NPs by electron paramagnetic resonance study

2.3.11 Determination of the percent conversion of the precursor salt to the NPs by Atomic absorption spectroscopy (AAS)

2.3.12 Determination of the surface area of NPs by the technique of Brunauer-Emmet-Teller (BET) analysis

2.3.13 Determination of the calcium content in the CPNP (calcium phosphate nanoparticle) by EDTA complex-metric titration

2.3.14 Estimation of the phosphate in CPNP

2.4 To study DNA-NPs interaction in vitro

2.4.1 DNA-NP interaction by UV/Vis-spectrophotometry

2.4.1A Alteration of DNA absorbance by interaction with NPs

2.4.1B Determination of the thermodynamic parameters of the DNA-NP
interaction

2.4.1C Jobs plot of DNA-NP interaction. II-19
2.4.1D Polyelectrolyte effects on DNA-NP interaction. II-20
2.4.1E The size of binding site of NPs on DNA. II-20
2.4.2 Study of NP-DNA interaction by fluorescence spectrometry. II-21
2.4.2A Quenching of DNA fluorescence (due to intercalation of EtBr) by NP binding. II-21
2.4.2B Nature of fluorescence quenching. II-22
2.4.3 Determination of the nature of NP-DNA binding (i.e., whether intercalation or groove binding mode). II-23
2.4.3A Through the study of quenching of EB (Ethidium bromide)-bound DNA fluorescence due to interaction with NP. II-23
2.4.3B Through the study of quenching of a NP fluorescence by single- and double stranded DNA. II-23
2.4.3C Through fluorescence polarization study of NP. II-24
2.4.3D Through study of quenching of a NP-DNA fluorescence by potassium Iodide (KI). II-24
2.4.3E Through the study of DNA melting. II-25
2.4.4 Circular Dichroism (CD) spectrometric study of DNA-NPs interaction. II-25
2.4.5 Viscotmetric study of DNA-NPs Interaction. II-26
2.4.6 Study on the enzyme- and chemical-mediated digestion of NP-bound DNA. II-27
2.4.6A Digestion with restriction endonuclease/DNase. II-27
2.4.6B Digestion with chemical reagents. II-27
2.4.7 Cyclic voltammetry study of DNA-NPs interaction. II-28
2.4.8 AFM study of CPNP DNA interaction II-28

2.5 To study antibacterial activity of NPs II-29

2.5.1 Synchronization and assay of bacteria. II-29
2.5.2 Determination of minimum inhibitory and minimum bactericidal concentration (MIC and MBC respectively) of an antibacterial agent. II-29
2.5.3 Study on bacterial growth kinetics at MIC of NPs. II-30
2.5.4.1 Estimation of reactive oxygen species (ROS) in E. coli cells. II-30
2.5.4.1A Spectrofluorimetric method: II-30
2.5.4.1B Flow cytometric method: II-31
2.5.4.2 Estimation of reactive oxygen species (ROS) in E. coli cells II-31
 Spectro-photometric method.
2.5.5 Estimation of protein content in bacterial cell extract by Bradford method. II-31
2.5.6 Assay of lipid per-oxidation in E. coli cells. II-32
2.5.7 Assay of protein oxidation in E. coli cells. II-33
2.5.8 Fluorimetric measurement of lipid leaching from E. coli cells. II-33
2.5.9 Protein leaching assay by Using Bradford reagents from E. coli cells II-34
2.5.10 Assay of (K+) ion release from E. coli cells. II-34
2.5.11 Assay of glutathione (GSH) level in E. coli cells. II-34
2.5.12 Assay of membrane permeability of E. coli cells. II-35
2.5.13 Determination of membrane potential of intact E. coli cells II-35
2.5.13A Spectro-fluorimetric method. II-35
2.5.13B Flow cytometric Method. II-36
2.5.14 Assay of alkaline phosphatase in E. coli cells. II-36
2.5.15 Isolation and purification of plasmid DNA from E. coli cells by alkaline lysis method. II-37
2.5.15A Isolation of plasmid DNA II-37
2.5.15B Purification of plasmid DNA II-38
2.5.16 Isolation of genomic DNA from E. coli cells. II-39
2.5.17 Electrophoresis of DNA through agarose gel. II-39
2.5.18 Transformation of E. coli cells with plasmid DNA. II-41
2.5.19 Study on cell surface morphology by AFM II-41
2.6 To study on anticancer activity of NPs II-42
2.6.1 MTT assay to study cell survivability / killing. II-42
2.6.2 Analysis of cell cycle by flow cytometry. II-43
2.6.3 Assay of cellular apoptosis by flow cytometry. II-44
2.6.4 Study on in vivo DNA fragmentation by comet assay. II-44
2.6.5 Analysis of nuclear morphology by Hoechst staining. II-45
2.6.6 Study on cell surface morphology by AFM II-46
2.7 Important chemicals II-46

Chapter: III

3 Introduction III-3

3.1 Result & Discussion III-4

3.1 Preparation of CPNP III-4

3.1.1 Synthesis of CPNP III-4

3.2 Characterization of CPNP III-4

3.2.1 By Dynamic light scattering study III-4

3.2.2 By X-ray diffraction (XRD) III-6

3.2.3 By Scanning electron microscope study (FESEM) associated with energy dispersive X-ray attachment study III-7

3.2.4 By Transmission electron microscope study (HRTEM) III-8

3.2.5 By Atomic force microscopy (AFM) III-9

3.2.6 By differential thermal and thermo-gravimetric analysis (DTA-TGA) study III-9

3.2.7 By Fourier transforms infrared spectroscopy (FTIR) study III-10

3.2.8 Measuring the percentage conversion of the ingredients into CPNPs through Malachite green assay for inorganic phosphate and EDTA gravimetric titration procedure for calcium respectively III-11

3.3 Conclusion III-12

Chapter: IV

4 Introduction IV-3

4.1 Result & discussion IV-3

4.1 CPNP-DNA interaction at ground state IV-3

4.1.1 UV-spectrophotometric Study on DNA-CPNP Interaction IV-3

4.1.2 Determination of thermodynamic parameters of the interaction IV-4

4.1.3 Continuous variation binding analysis Study IV-5

4.1.4 Polyelectrolyte effect of DNA-CPNP interaction IV-6
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2</td>
<td>CPNP-DNA interaction at excited state</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Fluorescence quenching study of CPNP by ds-DNA</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Fluorescence life-time measurement (Nature of quenching study)</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Determination of thermodynamic parameters of the interaction</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Interaction between DNA, CPNP and Ethidium Bromide</td>
</tr>
<tr>
<td>4.2.5</td>
<td>Fluorescence quenching study of CPNP by ss-DNA</td>
</tr>
<tr>
<td>4.2.6</td>
<td>Fluorescence quenching study of CPNP by KI in presence of DNA</td>
</tr>
<tr>
<td>4.2.7</td>
<td>Fluorescence polarization study of CPNP DNA interaction</td>
</tr>
<tr>
<td>4.3</td>
<td>CD spectrometric study of CPNP DNA interaction</td>
</tr>
<tr>
<td>4.4</td>
<td>Viscometric study of CPNP DNA interaction</td>
</tr>
<tr>
<td>4.5</td>
<td>DNA melting study of CPNP DNA interaction</td>
</tr>
<tr>
<td>4.6</td>
<td>Gel retardation and DNA digestion study of CPNP DNA interaction</td>
</tr>
<tr>
<td>4.7</td>
<td>FTIR study of CPNP DNA interaction</td>
</tr>
<tr>
<td>4.8</td>
<td>Cyclic voltammetric study of CPNP DNA interaction</td>
</tr>
<tr>
<td>4.9</td>
<td>AFM study of CPNP DNA interaction</td>
</tr>
<tr>
<td>4.10</td>
<td>Conclusion</td>
</tr>
</tbody>
</table>

Chapter: V

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Introduction</td>
</tr>
<tr>
<td>5.1</td>
<td>Result & discussion</td>
</tr>
<tr>
<td>5.2</td>
<td>Synthesis of Cu@AgNP</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Characterization of the synthesized Cu@AgNP</td>
</tr>
<tr>
<td>5.2.1.A</td>
<td>Optical property of Cu@AgNPs</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Size, shape and surface area of Cu@AgNPs</td>
</tr>
<tr>
<td>5.2.2.A</td>
<td>By DLS study</td>
</tr>
<tr>
<td>5.2.2.B</td>
<td>By HRTEM, FESEM and AFM study</td>
</tr>
<tr>
<td>5.2.2.C</td>
<td>By BET study</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Zeta potential, mol. wt. and crystallinity of the particles</td>
</tr>
<tr>
<td>5.2.3.A</td>
<td>By DLS study</td>
</tr>
<tr>
<td>5.2.3.B</td>
<td>By XRD study</td>
</tr>
<tr>
<td>5.2.4</td>
<td>Chemical organization and composition of Cu@AgNPs</td>
</tr>
<tr>
<td>5.2.4.A</td>
<td>By EDX study</td>
</tr>
<tr>
<td>5.2.4.B</td>
<td>By FTIR study</td>
</tr>
</tbody>
</table>
5.2.4. C By XPS and EPR study
5.2.5 Thermal stability of Cu@AgNPs
 By DTA-TGA study
5.2.6 Percentage of conversion study of Cu@AgNPs
 By AAS study
5.3 Conclusion

Chapter VI
6 Introduction
6.1 Result & discussion
6.1 Study on the antibacterial activity
 6.1.1 Determination of the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of Cu@AgNPs
 6.1.2 Study on ROS generation on bacterial cells upon NPs exposure
 6.1.3 Study on ROS mediated oxidation of different biomolecules in bacterial cells upon Cu@AgNP exposure
 6.1.4 Study on protein leakage on bacterial cells upon NPs exposure
 6.1.5 Study on lipid leakage on bacterial cells upon NPs exposure
 6.1.6 Study on membrane permeability on bacterial cells upon NPs exposure
 6.1.7 Study on K+ ion release from E. coli cells upon NPs exposure
 6.1.8 Study on membrane potential on bacterial cells upon NPs exposure
 6.1.9 Study on activity of membrane protein alkaline phosphatase of bacterial cells upon NPs exposure
 6.1.10 Study on chromosomal DNA degradation of bacterial cells upon NPs exposure
 6.1.11 Study on morphology of bacterial cells upon NPs exposure by AFM
6.2 Conclusion

Chapter VII
7 Introduction
7.1 Result & discussion
7.1 Anticancer activity of Cu@AgNPs
7.1.1 Study on MTT assay of Cu@AgNPs in animal cell line VII-3
7.1.2 Study on cell cycle arrest analysis by FACS VII-7
7.1.3 Study on apoptotic nature of cell killing by FACS VII-9
7.1.4 Study on Comet assay VII-12
7.1.5 Study on nuclear morphology analysis by fluorescence microscope VII-13
7.1.6 Study on cell morphology analysis by AFM VII-14

7.2 In vitro Cu@Ag NPs, DNA interaction VII-15

7.2.1 By UV-Visible spectroscopy VII-15
7.2.2 By Fluorescence spectroscopy VII-18
7.2.3 Agarose gel electrophoresis study VII-21
7.2.4 Thermal denaturation study VII-21
7.2.5 Fluorescence melting study VII-22
7.2.6 Viscometric study VII-23
7.2.7 Cyclic voltametric study VII-23

7.3 Conclusion VII-24

Bibliography R-1
Publications