CHAPTER-1 INTRODUCTION

1.1 Advantages of GIS over the Conventional Open Air Substations 3
1.2 Disadvantages of GIS 4
1.3 The main problems associated with the very fast transient over voltages 6
1.4 Suppression of very fast transient over voltages in GIS systems 6
1.5 Transient electromagnetic phenomena in GIS systems 7
1.6 Various components of GIS systems 11
 1.6.1 Circuit breakers for GIS systems 11
 1.6.2 Disconnecting switches 11
 1.6.3 Earthing switches 11
 1.6.4 Current transformers 12
 1.6.5 Voltage Transformers 12
1.7 Generation of very fast transient over voltages in GIS 14
 1.7.1 Principle of FTO generation 17
1.8 Secondary breakdown in GIS 20
1.9 Surges in GIS 21
1.10 Restrikes and pre-restrikes in GIS 22
1.11 Trapped charge in GIS 24
1.12 Current chopping in GIS 26
1.13 Frequency characteristics of VFTOs and its importance 28
1.14 Transient electric and magnetic fields in GIS systems 30
1.15 Literature survey

* Literature survey on Very fast transient over voltages and measurements
* Literature survey on Transient electric and magnetic fields in GIS systems
* Literature survey on Wavelets

CHAPTER-2 STATEMENT OF THE PROBLEM

2.1 Introduction 63
2.2 Main contributions of the thesis 68

CHAPTER-3 MODELING OF GIS COMPONENT FOR CALCULATION OF TRANSIENTS

3.1 Introduction 71
3.2 A typical 245kV Gas Insulated Substation 76
3.3 Representation of Important GIS components 76
3.4 Modeling of GIS components 79
3.5 Calculation of various parameters of GIS 82
 3.5.1 Calculation of Inductance 82
 3.5.2 Calculation of Capacitance 83
 3.5.3 Calculation of Capacitance due to Spacer 83
 3.5.4 Calculation of Short circuit Inductance and Resistance 84
 3.5.5 Calculation of Inductance due to Load 85
 3.5.6 Calculation of Variable Arc Resistance through Toeplers-spark law 85
 3.5.7 Calculation of Surge Impedance 86
3.6 Typical section of Segregated phase 245kV GIS system 87
 3.6.1 Description of the circuit 88
3.7 EMTP-RV models of the 245kV GIS system 91
 3.7.1 EMTP-RV model of the 245kV GIS system with DS1 closing operation with fixed arc resistance 92
 3.7.2. EMTP-RV model of the 245kV GIS system with DS1 closing operation with Variable arc resistance 93
3.7.3 EMTP-RV model of the 245kV GIS system with DS1 opening operation with fixed arc resistance 93
3.7.4 EMTP-RV model of the 245kV GIS system with DS1 opening operation with variable arc resistance 94
3.7.5 EMTP-RV model of the 245kV GIS system with DS1 opening operation with variable arc resistance and trapped charge 94
3.7.6 EMTP-RV model of the 245kV GIS system with DS2 opening operation with variable arc resistance 99
3.8 Simulation Results 100
3.9 Fast Fourier Transform analysis of very fast transient over voltages 113
3.9.1 Discrete Fourier Transforms 114
3.9.2 Inverse Discrete Fourier transforms 115
3.9.3 Fast Fourier Transform (FFT) 115
3.9.4 Weighting functions 118
3.9.5 FFT Analysis of VFTOs 122
3.9.6 The transients on source side and load side of the Disconnector Switch with different trapped charges 135
3.10 Various methods for Supression of VFTOs in a GIS Systems and Comparison 138
3.10.1 VFTO suppression using opening and closing resistor across Disconnector 138
3.10.2 Fast Fourier Transform (FFT) analysis of reduced Transient over voltages 139
3.10.3 Single phase equivalent circuit for 245kV GIS system with Opening and closing resistance across Disconnector switch 140
3.10.4 Simulation Results with Opening and closing resistance across Disconnector switch 143
3.11 VFTO suppression using Ferrite rings 149
3.11.1 Equivalent Characteristics of Ferrite rings 150
3.11.2 Losing characteristics of Ferrite rings 151
3.11.3 Design aspects of ferrite rings 151
3.11.4 Specifications of 3S4 Ferromagnetic material 152
3.11.5 Impedance behavior of 3S4 Ferrite cores 153
3.12 EMTP –RV Equivalent circuit of 245kV GIS with application of ferrite rings 156
3.13 Simulation results with application of ferrite rings 158
3.14 Results 164
3.15 Summary 169

CHAPTER-4 EXPERIMENTAL SET-UP FOR THE ESTIMATION AND SUPPRESSION OF VFTOs IN A GIS SYSTEM. 173

4.1 Introduction 173
4.2 Description of the Experimental set up 178
4.3 Design aspects of Capacitive surge sensor 180
4.4 Experimental results during opening of DS and without ferrite rings 191
4.5 Experimental results during opening of DS and with ferrite rings 199
4.6 Experimental results during closing of DS and without ferrite rings 207
4.7 Experimental results during closing of DS and with ferrite rings 213
4.8 Results 219
4.9 Summary 221

CHAPTER-5 COMPUTATION OF ELECTRIC & MAGNETIC FIELDS IN A 245kV GIS SUBSTATION 224

5.1 Introduction 224
5.2 Model building with ELECNET SOFTWARE 227
5.3 Modeling flowchart of ELECNET SOFTWARE 228
5.4 Modeling of 245kV GIS system using ELECNET SOFTWARE 230
5.5 Material properties used in the simulation 231
5.6 Modeling of 245kV GIS using OPERA SOFTWARE 233
5.7 Simulation field plots 236
5.8 EM field data from experimental measurements 243
CHAPTER-6 ANALYSIS OF VFTOs USING WAVELET TRANSFORMS

6.1 Introduction
6.2 Introduction to wavelets
6.3 Mathematical background
6.4 Capabilities of wavelets
6.5 Basic concepts of wavelets
 6.5.1 Continuous wavelet transform (CWT)
6.6 Scaling
6.7 Wavelets families
 6.7.1 Mexican hat wavelet
 6.7.2 Morlet wavelet
 6.7.3 Discrete wavelet transforms
6.8 Wavelet systems
6.9 Wavelet analysis of transient signals
6.10 Time-frequency analysis of VFTOs/VFTCs in GIS systems
6.11 Very fast transient current
6.12 Proposed wavelet model
6.13 Results
6.14 Summary

CHAPTER-7 CONCLUSIONS

SCOPE OF FUTURE WORK
LIST OF PUBLICATIONS FROM THIS THESIS
REFERENCES
ANNEXURE-1