CONTENTS

Chapter 1 INTRODUCTION 1

1.1 Molecular aggregates and self assemblies 1

1.2 Photophysics of probes in self assemblies and molecular aggregates 2

1.3 Urea: Significance and biological importance 3

1.4 Urea - water system 4

1.5 Globular proteins - Bovine Serum Albumin (BSA) 11

1.6 Fluorescence spectral techniques 13

1.7 Acridinedione dyes 15

1.8 Tryptophan fluorescence 18

1.9 Protein denaturation 23

2. Role of hydrogen-bonding and hydrophobic interaction on the protein conformation 24
2. Theories and Mechanism of protein denaturation 24
3. Direct mechanism 27
4. Indirect mechanism 27
5. Denaturation of BSA by urea 28
6. Role of alkyl substitution on the denaturation process 30

Chapter 2 SCOPE OF THE PRESENT INVESTIGATION 31

Chapter 3 EXPERIMENTAL METHODS 35

3.1 Materials 35

3.2 Preparation of acridinedione dyes 36
1. Preparation of resorcinol based acridinedione dyes (ADR 1-4) 36
2. Preparation of dimedone based acridinedione dyes (ADD 1-2) 38

3.3 Instrumental techniques 40
1. Absorption spectrophotometer 40
2. Fluorescence spectrophotometer 40
3. Time Correlated Single Photon Counting (TCSPC) spectrometer 40

4. Viscometer 45
5. Spectropolarimeter 45

3.4 Theoretical methods 45
1. Quantum Chemical basis 47
2. Hartree-Fock Self Consistent Field
 Molecular Orbital (HF-SCF MO) formalism 48
3. Ab initio SCF-MO methods 49
4. Electron Correlation and Post-Hartree-Fock Methods 50
5. Density Functional Theory (DFT) 50
6. Solvent effects 51
7. Computational methods used in the present thesis 52

Chapter 4 RESULTS AND DISCUSSION 53

4.1 PET suppression of acridinedione dyes by urea derivatives 53
1. Absorption spectral studies 54
2. Fluorescence spectral studies 55
3. Red edge excitation shift (REES) spectral studies 56
4. Role of solvent on the fluorescence enhancement of ADR 1 dye 57
5. PET and fluorescence quantum yield 58
6. Time resolved fluorescence studies 59
7. Urea-Solvent System 60
 a) Urea-water system- Significance of the shell and bulk phase 61
 b) Behaviour of alkyl urea derivatives in aqueous solution 61
c) Behaviour of urea and alkyl urea derivatives in methanol

8. Interaction of ADR1 dye with urea derivatives in water and Methanol

9. Summary and conclusion

4.2 Interaction of acridinedione dyes with Bovine Serum Albumin

1. Absorption spectral studies

2. Fluorescence spectral studies

3. Nature of probe-protein binding

4. Steady-state fluorescence anisotropy study

5. Time resolved fluorescence studies

6. Mechanism of fluorescence enhancement

7. Summary and conclusion

4.3 Interaction of urea and alkyl urea derivatives with BSA

1. Absorption spectral studies

2. Fluorescence spectral studies

a) Role of urea on BSA fluorescence

b) Role of alkyl substituted urea derivatives on BSA fluorescence

i) Unsymmetrical alkyl urea derivatives

ii) Symmetrical urea derivatives
iii) Alkyl chain length in urea
molecular framework on BSA fluorescence 87

c) Mode of hydrogen-bonding involving
BSA – Urea derivatives 89

3. 3D Contour spectral studies 91

4. Time-resolved fluorescence studies 92
 a) Role of urea on the fluorescence
 lifetime of BSA 93
 b) Role of TMU on the fluorescence
 lifetime of BSA. 94
 c) Role of unsymmetrical urea derivatives
 on the fluorescence lifetime of BSA 95

5. Circular Dichroism studies 96

6. Nature of interaction involving BSA with
 urea derivatives 97

7. Summary and conclusion 98

4.4 Interaction of L-Tryptophan with Urea derivatives 99

1. Absorption spectral studies 99

2. Fluorescence spectral studies 100
 a) Role of urea on L-tryptophan
 fluorescence 100
 b) Role of DMU and TMU on
 L-tryptophan fluorescence 101
 c) Interaction of indole with urea
derivatives 103
3. Time-resolved fluorescence spectral studies
 a) Role of urea on the fluorescence lifetime of L-tryptophan 105
 b) Role of TMU on the fluorescence lifetime of L-tryptophan 106

 a) Computational aspects 109
 b) Conformational studies on L-tryptophan in gas-phase and aqueous medium 111
 c) Conformational studies on L-tryptophan-urea complexes 112
 i) Gas phase studies of L-tryptophan-urea 114
 ii) Aqueous phase studies of L-tryptophan-urea 114
 d) Conformational studies on L-tryptophan-TMU complexes 115
 i) Gas phase studies of L-tryptophan-TMU 115
 ii) Aqueous phase studies of L-tryptophan-TMU 116

5. Summary and conclusion 117

Chapter 5 REFERENCES 118