TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
<td>xviii</td>
</tr>
</tbody>
</table>

1 INTRODUCTION TO THERMAL POWER PLANT PROCESS

1.1 INTRODUCTION

1.2 OBJECTIVE OF POWER INDUSTRY

1.3 TYPES OF THERMAL POWER PLANT FUELS

1.4 COAL QUALITY ANALYSIS

1.5 COMBUSTION PROCESS

1.6 COMPONENTS OF COAL FIRED BOILER

1.6.1 Water Wall System

1.6.2 Economizer

1.6.3 Super-Heater

1.6.4 Re-Heaters

1.6.5 Air Heater

1.6.5.1 Primary air heater

1.6.5.2 Secondary air heater

1.7 UTILITY BOILER PERFORMANCE FACTORS
2 LITERATURE REVIEW

2.1 REVIEW OF DATA DRIVEN METHODOLOGIES 21
2.2 SURVEY OF POWER OPTIMIZATION 25
2.3 SURVEY OF THERMAL DATA ANALYSIS 26

3 FORMAL MODEL OF UTILITY BOILER AND GENERATION OF SYNTHETIC THERMAL DATA 28

3.1 OBJECTIVE 28
3.2 THERMAL DATA SET 28
3.3 FORMAL MODEL OF UTILITY BOILER 30
3.4 IMPLEMENTATION OF THERMAL PROCESS 34
 3.4.1 Outcome of Boiler Process 34
 3.4.2 Fuel Analysis 39
 3.4.3 Heat Loss Analysis 42
 3.4.4 Correlation Analysis 43
3.5 GENERATION OF SYNTHETIC THERMAL DATA 45
3.5.1 Working Principle of Vander Monde Matrix

3.5.2 Fact Determination

3.5.3 Evaluation of Polynomial Equations

3.5.4 Summary

4 MINING OPTIMAL BOILER DESIGN VALUES USING CLUSTERING

4.1 DATA MINING AN INTRODUCTION

4.2 CLUSTER ANALYSIS

4.2.1 K-Means Algorithm

4.2.1.1 Introduction

4.2.1.2 K-Means Algorithm

4.2.1.3 Clustering using K-Means

4.2.1.4 Representation of Optimal Design Criteria

4.2.2 Self-Organizing Map Clustering (SOM)

4.2.2.1 Introduction

4.2.2.2 SOM Algorithm

4.2.2.3 Clustering using SOM

4.2.2.4 Representation of the SOM Design

4.2.3 Optimal Design Values

4.3 SUMMARY
ESTIMATION OF PERFORMANCE
CONSTRAINED THERMAL FACTORS

5.1 THERMAL FACTOR ESTIMATION
USING NEURAL NETWORK

5.1.1 Introduction
5.1.2 Basics of Neural Network
5.1.3 Estimation of Performance Factor
 5.1.3.1 Prediction I - Coal Flow Rate
 5.1.3.2 Prediction II – Burner Tilt
5.1.4 Summary

5.2 HEAT ABSORPTION ESTIMATION
USING REGRESSION ANALYSIS

5.2.1 Introduction
5.2.2 Basics of Multiple Regressions
5.2.3 Results
5.2.4 Summary

CONTROL STRATEGY AND THE RESULTANT OPERATIONAL IMPACT

6.1 INTRODUCTION
6.2 KEY INFERENCES FROM GENERATED HAP
6.3 INTERPRETATION THROUGH ANALYSIS
 6.3.1 Analyzing Aspects
 6.3.1.1 Heat Absorption Pattern Analysis
6.3.1.2 Clustered Pattern Analysis 103
6.3.1.3 Linear Pattern Analysis 105
6.3.1.4 Divergence Analysis (%) 107
6.3.2 Influence of Thermal Components in Boiler Process 111
6.4 SUMMARY 114

7 CONCLUSION AND FUTURE WORK 116
7.1 CONCLUSION 116
7.2 FUTURE WORK 117

APPENDIX I 119

REFERENCES 129

LIST OF PUBLICATIONS 140