CHAPTER 6

(\(\tau_1, \tau_2\)) – SEMI-PREGENERALIZED CLOSED SETS
AND SOME FUNCTIONS

In this chapter we define \((\tau_1, \tau_2)\)-semi-generalized closed sets,

\((\tau_1, \tau_2)\)-generalized semi-preclosed sets, \((\tau_1, \tau_2)\)-semi-star-regular sets.

\((\tau_1, \tau_2)\)-semi-pregeneralized closed sets. Also we define some functions on them. And

we define pairwise semi-pre \(T_{1/2}\) spaces, \((\tau_1, \tau_2)\)-semi-pre \(T_{1/2}\) spaces and discuss some
of their properties.

6.1. INTRODUCTION

in the year 1987. J. Dontchev [14] introduced semi-pre \(T_{1/2}\) spaces, Y.Gnanambal
[12] introduced preregular \(T_{1/2}\) spaces. Semi-pre generalized closed sets in unital
topological spaces are introduced by M.K.R.S. Veerakumar [28]. In the present
chapter it is shown that some of their results may be extended to bitopological
spaces. Regarding notations scl\((A) \), spcl \((A) \) and pcl \((A) \) denote the semi-

We recall

DEFINITION 6.1.1

A subset A of a bitopological space (X, τ_1, τ_2) is said to be

(i) (τ_1, τ_2)-semiopen [26] if $A \subseteq \tau_2 - \text{cl}(\tau_1 - \text{int}(A))$.

(ii) (τ_1, τ_2)-semiclosed [26] if $\tau_2 - \text{int}(\tau_1 - \text{cl}(A)) \subseteq A$.

(iii) (τ_1, τ_2)-preclosed [17] if $\tau_1 - \text{cl}(\tau_2 - \text{int}(A)) \subseteq A$.

(iv) (τ_1, τ_2)-semi-preopen [17] if $A \subseteq \tau_2 - \text{cl}(\tau_1 - \text{int}(\tau_2 - \text{cl}(A)))$.

(v) (τ_1, τ_2)-semi-preclosed [17] if $\tau_2 - \text{int}(\tau_1 - \text{cl}(\tau_2 - \text{int}(A))) \subseteq A$.

(vi) (τ_1, τ_2)-α open [5.2.1] if $A \subseteq \tau_1 - \text{int}(\tau_2 - \text{cl}(\tau_1 - \text{int}(A)))$.

DEFINITION 6.1.2

A subset A of a topological space (X, τ) is said to be semi-regular[10] if A is both semiopen and semiclosed.
DEFINITION 6.1.3

A subset A of a bitopological space (X, τ_1, τ_2) is said to be pairwise α open [5.2.1] if it is (τ_1, τ_2)-α open and (τ_2, τ_1)-α open.

6.2 (τ_1, τ_2)—SEMI-PREGENERATLIZED CLOSED SETS

DEFINITION 6.2.1

A subset A of (X, τ_1, τ_2) is called (τ_1, τ_2)-semi-generalized closed (briefly (τ_1, τ_2)-sg closed) if (τ_1, τ_2)-scl(A) $\subseteq U$ whenever $A \subseteq U$ and U is (τ_1, τ_2)-semiopen.

DEFINITION 6.2.2

A subset A of (X, τ_1, τ_2) is called (τ_1, τ_2)-generalized semi-preclosed (briefly (τ_1, τ_2)-gsp closed) if (τ_1, τ_2)-spcl(A) $\subseteq U$ whenever $A \subseteq U$ and U is τ_1-open.

DEFINITION 6.2.3

A subset A of (X, τ_1, τ_2) is called a (τ_1, τ_2)-semi-star-regular if A is both
A subset A of (X, τ_1, τ_2) is called (τ_1, τ_2)-semi-pregeneralized closed (briefly (τ_1, τ_2)-spg closed) if (τ_1, τ_2)-spcl$(A) \subseteq U$ whenever $A \subseteq U$ and U is (τ_1, τ_2)-semiopen.

Here (τ_1, τ_2)-spcl(A) denotes the closure of (τ_1, τ_2)-semipreclosed set A.

Theorem 6.2.5

Every (τ_1, τ_2)-preclosed set is (τ_1, τ_2)-spg closed.

Proof

Let A is (τ_1, τ_2)-preclosed set of (X, τ_1, τ_2).

$$\Rightarrow \tau_1 \cdot \text{cl} (\tau_2 \cdot \text{int} (A)) \subseteq A.$$ \hspace{1cm} (1)

But $\tau_2 \cdot \text{int} (\tau_1 \cdot \text{cl} (\tau_2 \cdot \text{int} (A))) \subseteq \tau_1 \cdot \text{cl} (\tau_2 \cdot \text{int} (A))$. \hspace{1cm} (2)

From (1) and (2) we have $\tau_2 \cdot \text{int} (\tau_1 \cdot \text{cl} (\tau_2 \cdot \text{int} (A))) \subseteq A$.

$$\Rightarrow A \text{ is } (\tau_1, \tau_2) \text{-semi-preclosed. And hence } (\tau_1, \tau_2) \cdot \text{spcl} (A) = A.$$
Therefore A is (τ_1, τ_2) - spg closed.

The following example shows that the converse of the above theorem is not true.

EXAMPLE 6.2.6

Let $X = \{a, b, c\}$. Let $\tau_1 = \{\emptyset, X\}$ and

$$\tau_2 = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$$
be topologies on X.

Take $A = \{a\}$.

Then A is (τ_1, τ_2) - spg closed.

But it is not (τ_1, τ_2) - preclosed.

For, τ_1 - cl $(\tau_2$ - int $(A)) = \{a, b\} \not\subset A = \{a\}$.

THEOREM 6.2.7

Every (τ_1, τ_2) - semi-generalized closed set is (τ_1, τ_2) - spg closed.

PROOF

For any subset A of (X, τ_1, τ_2), we have

$$(\tau_1, \tau_2)$ - spcl $(A) \subset (\tau_1, \tau_2)$ - scl $(A).$$
For.

Let $x \in (\tau_1, \tau_2) - \text{spcl}(A)$. Let G be a $(\tau_1, \tau_2) - \text{semiopen}$ neighbourhood of x.

Then G is a $(\tau_1, \tau_2) - \text{semi-preopen}$ neighbourhood of x.

But $x \in (\tau_1, \tau_2) - \text{spcl}(A)$ and hence $G \cap A \neq \emptyset$.

Then $G \cap A \neq \emptyset$ for all $(\tau_1, \tau_2) - \text{semiopen}$ neighbourhood of x.

Hence $x \in (\tau_1, \tau_2) - \text{scl}(A)$. Since x is arbitrary we have,

$$(\tau_1, \tau_2) - \text{spcl}(A) \subseteq (\tau_1, \tau_2) - \text{scl}(A).$$

Let A be $(\tau_1, \tau_2) - \text{semi-generalized closed}$ set. Let $A \subseteq U$ and U is $(\tau_1, \tau_2) - \text{semiopen}$. That implies $(\tau_1, \tau_2) - \text{scl}(A) \subseteq U$.

From (3) and (4) we have

$$(\tau_1, \tau_2) - \text{spcl}(A) \subseteq U, A \subseteq U \text{ and } U \text{ is } (\tau_1, \tau_2) - \text{semiopen}.$$

And hence A is $(\tau_1, \tau_2) - \text{spg closed}$.

The following example shows that the converse of the above theorem is not true.
(τ₁, τ₂) – Semi-pregeneralized closed sets and some functions

EXAMPLE 6.2.8

Let \(X = \{ a, b, c \} \). Let \(τ₁ = \{ \emptyset, X, \{ a \} \} \) and \(τ₂ = \{ \emptyset, X, \{ a, b \} \} \) be topologies on \(X \).

Take \(A = \{ a, c \} \). Then \(A \) is \((τ₁, τ₂)\)-spg closed.

But it is not \((τ₁, τ₂)\)-sg closed. For, take \(U = \{ a, c \} \) which is \((τ₁, τ₂)\)-semiopen and \(A \subseteq U \). But \((τ₁, τ₂)\)-scl \((A) = X \not\subset U \).

THEOREM 6.2.9

Every \((τ₁, τ₂)\)-spg closed set is \((τ₁, τ₂)\)-gsp closed but not conversely.

PROOF

Let \(A \) is \((τ₁, τ₂)\)-spg closed. Let \(U \) be any \(τ₁ \)-open set containing \(A \).

Then by remark 2.2 of [26] \(U \) is \((τ₁, τ₂)\)-semi open.

Since \(A \) is \((τ₁, τ₂)\)-spg closed, we have \((τ₁, τ₂)\)-spcl \((A) \subseteq U \).

Thus \((τ₁, τ₂)\)-spcl \((A) \subseteq U \), \(A \subseteq U \) and \(U \) is \(τ₁ \)-open. That implies \(A \) is \((τ₁, τ₂)\)-gsp closed.
EXAMPLE 6.2.10

Let $X = \{ a, b, c \}$. Let $\tau_1 = \{ \emptyset, X, \{ a \}, \{ a, b \} \}$ and $\tau_2 = \{ \emptyset, X, \{ a \} \}$ be topologies on X.

Take $A = \{ a, c \}$.

Then A is (τ_1, τ_2)-gsp closed, but not (τ_1, τ_2)-spg closed.

For, take $U = \{ a, c \}$. Then U is (τ_1, τ_2)-semiopen also

$A \subseteq U$ but (τ_1, τ_2)-spcl $(A) = \{ a, b, c \} \not\subseteq U$.

THEOREM 6.2.11

If A is (τ_1, τ_2)-semiopen and (τ_1, τ_2)-spg closed set of (X, τ_1, τ_2), then A is (τ_1, τ_2)-semi-pre closed set of (X, τ_1, τ_2).

PROOF

Since $A \subseteq A$. A is (τ_1, τ_2)-semiopen and A is (τ_1, τ_2)-spg closed.

we have (τ_1, τ_2)-spcl $(A) \subseteq A.$ --- --- (5)

But always $A \subseteq (\tau_1, \tau_2)$-spcl (A).

--- --- (6)
From (5) and (6) we have \(A = (\tau_1, \tau_2) - \text{spcl} (A) \). That implies \(A \) is

\((\tau_1, \tau_2) - \text{semipreclosed set of } (X, \tau_1, \tau_2)\).

THEOREM 6.2.12

Let \(A \) be a \((\tau_1, \tau_2) - \text{spg closed set of } (X, \tau_1, \tau_2)\). Then

\((\tau_1, \tau_2) - \text{spcl} (A) - A \) does not contain non empty \((\tau_1, \tau_2) - \text{semiclosed set}\).

PROOF

Let \(F \) be a \((\tau_1, \tau_2) - \text{semiclosed set contained in } (\tau_1, \tau_2) - \text{spcl}(A) - A\).

Then clearly \(A \subseteq X - F \) where \(A \) is \((\tau_1, \tau_2) - \text{spg closed and } X - F \) is

\((\tau_1, \tau_2) - \text{semiopen set of } (X, \tau_1, \tau_2)\). And hence \((\tau_1, \tau_2) - \text{spcl} (A) \subseteq X - F\).

That implies \(F \subseteq X - (\tau_1, \tau_2) - \text{spcl} (A)\).

Then \(F \subseteq (X - (\tau_1, \tau_2) - \text{spcl} (A)) \cap ((\tau_1, \tau_2) - \text{spcl} (A) - A) \).

Hence \(F \subseteq (X - (\tau_1, \tau_2) - \text{spcl} (A)) \cap ((\tau_1, \tau_2) - \text{spcl} (A)) = \phi\).

This shows that \(F = \phi\).
THEOREM 6.2.13

If A is pairwise α open and $(\tau_1, \tau_2) - \text{spg}$ closed set of (X, τ_1, τ_2), then A is τ_2 - open in (X, τ_1, τ_2).

PROOF

By hypothesis A is $(\tau_1, \tau_2) - \alpha$ open.

Then $A \subseteq \tau_1 - \text{int} (\tau_2 - \text{cl} (\tau_1 - \text{int} (A)))$. --- --- (7)

Always $\tau_1 - \text{int} (\tau_2 - \text{cl} (\tau_1 - \text{int} (A))) \subseteq (\tau_2 - \text{cl} (\tau_1 - \text{int} (A)))$. --- (8)

From (7) and (8) we have $A \subseteq \tau_2 - \text{cl} (\tau_1 - \text{int} (A))$.

And hence A is $(\tau_1, \tau_2) -$ semiopen.

Also $A \subseteq A$ and A is $(\tau_1, \tau_2) - \text{spg}$ closed set. That implies $(\tau_1, \tau_2) - \text{spcl} (A) \subseteq A$.

But $(\tau_1, \tau_2) - \text{spcl} (A) \supseteq A \cup \tau_2 - \text{int} (\tau_1 - \text{cl} (\tau_2 - \text{int} (A)))$.

Thus $\tau_2 - \text{int} (\tau_1 - \text{cl} (\tau_2 - \text{int} (A))) \subseteq A$. --- --- (9)

Also A is $(\tau_2, \tau_1) - \alpha$ open. We have $A \subseteq \tau_2 - \text{int} (\tau_1 - \text{cl} (\tau_2 - \text{int} (A)))$. --- --- (10)
From (9) and (10) we have $A = \tau_2 \cdot \text{int} (\tau_1 \cdot \text{cl} (\tau_2 \cdot \text{int} (A)))$.

That implies A is τ_2-open is (X, τ_1, τ_2).

THEOREM 6.2.14

Let A is $(\tau_1, \tau_2) - \text{spg}$ closed set of (X, τ_1, τ_2) and $A \subset B \subset (\tau_1, \tau_2) - \text{spcl} (A)$. Then B is $(\tau_1, \tau_2) - \text{spg}$ closed set of (X, τ_1, τ_2).

PROOF

Let U be a $(\tau_1, \tau_2) - \text{semiopen}$ set of (X, τ_1, τ_2) such that $B \subset U$.

Then $A \subset B \subset U$ and hence $A \subset U$. Since A is $(\tau_1, \tau_2) - \text{spg}$ closed, $A \subset U$, and U is $(\tau_1, \tau_2) - \text{semi open}$, we have, $(\tau_1, \tau_2) - \text{spcl} (A) \subset U$. By hypothesis $B \subset (\tau_1, \tau_2) - \text{spcl} (A)$. Thus $(\tau_1, \tau_2) - \text{spcl} (B) \subset (\tau_1, \tau_2) - \text{spcl} (A) \subset U$.

$B \subset U$ and U is $(\tau_1, \tau_2) - \text{semiopen}$.

This proves that B is also $(\tau_1, \tau_2) - \text{spg}$ closed set of (X, τ_1, τ_2).

THEOREM 6.2.15

For a subset A of (X, τ_1, τ_2) the following conditions are equivalent:
(\(\tau_1, \tau_2\)) - Semi-pregeneralized closed sets and some functions

(i) \(A\) is \((\tau_1, \tau_2)\) - semiopen and \((\tau_1, \tau_2)\) - sg closed.

(ii) \(A\) is \((\tau_1, \tau_2)\) - semi-star - regular.

PROOF

(i) \(\Rightarrow\) (ii)

Let \(A\) is \((\tau_1, \tau_2)\) - semiopen and \((\tau_1, \tau_2)\) - sg closed. \hfill (11)

Now \(A\) is \((\tau_1, \tau_2)\) - sg closed, \(A \subseteq A\) and \(A\) is \((\tau_1, \tau_2)\) - semiopen implies that

\((\tau_1, \tau_2)\) - scl\((A)\) \(\subseteq A\). \hfill (12)

Now \((\tau_1, \tau_2)\) - scl\((A) = A \cup \tau_2 \text{ - int}\((\tau_1 \text{ - cl}\((A)\)).\hfill (13)

From (12) and (13) we have \(\tau_2 \text{ - int}\((\tau_1 \text{ - cl}\((A)\)) \subseteq A\).

That implies \(A\) is \((\tau_1, \tau_2)\) - semi closed. \hfill (14)

From (11) and (14) we have \(A\) is \((\tau_1, \tau_2)\) - semi-star - regular.

(ii) \(\Rightarrow\) (i)

Now every \((\tau_1, \tau_2)\) - semi-star - regular set is both \((\tau_1, \tau_2)\) - semiopen and

\((\tau_1, \tau_2)\) - semiclosed. Also every \((\tau_1, \tau_2)\) - semi closed set is \((\tau_1, \tau_2)\) - sg closed.
For, let \(A \) be any \((\tau_1, \tau_2) \)-semiclosed set such that \(A \subseteq U \) and \(U \) is \((\tau_1, \tau_2) \)-semiopen in \((X, \tau_1, \tau_2) \). Since \(A \) is \((\tau_1, \tau_2) \)-semi closed, we have \(A = (\tau_1, \tau_2) \)-scl \((A)\). That implies \((\tau_1, \tau_2) \)-scl \((A)\) \(\subseteq A\), \(A \subseteq U\) and \(U\) is \((\tau_1, \tau_2) \)-semiopen. And hence \(A \) is \((\tau_1, \tau_2) \)-sg closed in \((X, \tau_1, \tau_2) \).

THEOREM 6.2.16

For a subset \(A \) of \((X, \tau_1, \tau_2) \) with \((\tau_1, \tau_2) \)-spcl \((A)\) = \((\tau_1, \tau_2) \)-scl \((A)\) the following conditions are equivalent:

(i) \(A \) is \((\tau_1, \tau_2) \)-semi open and \((\tau_1, \tau_2) \)-spg closed.

(ii) \(A \) is \((\tau_1, \tau_2) \)-semi-star regular.

PROOF

(i) \(\Rightarrow\) (ii)

By hypothesis \(A \) is \((\tau_1, \tau_2) \)-semi open, \(A \subseteq A \) and \(A \) is \((\tau_1, \tau_2) \)-spg closed.

That implies \((\tau_1, \tau_2) \)-spcl \((A)\) \(\subseteq A\).

By Theorem [6.2.11] \(A \) is \((\tau_1, \tau_2) \)-semi-preclosed.
Thus $A = (\tau_1, \tau_2)$ - spcl(A). Since (τ_1, τ_2) - spcl$(A) = (\tau_1, \tau_2)$ - scl(A), we have $A = (\tau_1, \tau_2)$ - scl(A). This implies that A is (τ_1, τ_2) - semiclosed.

Therefore we have A is (τ_1, τ_2) - semi-star-regular.

(ii) \Rightarrow (i)

Let A is (τ_1, τ_2) - semi-star-regular

Then by theorem [6.2.15] A is (τ_1, τ_2) - semiopen and (τ_1, τ_2) - sg closed.

Also by theorem [6.2.7] every (τ_1, τ_2) - sg closed set is (τ_1, τ_2) - spg closed.

Therefore A is (τ_1, τ_2) - semiopen and (τ_1, τ_2) - spg closed. \square

6.3. PAIRWISE SEMI-PRE $T_{1/4}$ SPACES

DEFINITION 6.3.1

A space (X, τ_1, τ_2) is called a (τ_1, τ_2) - semi-pre $T_{1/4}$ space if every (τ_1, τ_2) - semi-pre generalized closed set is (τ_1, τ_2) - semi-preclosed.

DEFINITION 6.3.2

A space (X, τ_1, τ_2) is called pairwise semi-pre $T_{1/4}$ if it is
EXAMPLE 6.3.3

Let \(X = \{ a, b \} \). Let \(\tau_1 = \{ \emptyset, X, \{ a \} \} \) and \(\tau_2 = \{ \emptyset, X, \{ b \} \} \) be topologies on \(X \). Then \((X, \tau_1, \tau_2)\) is pairwise semi-pre \(T_{1/4} \) space.

THEOREM 6.3.4

Let \((X, \tau_1, \tau_2)\) be a bitopological space. If \((X, \tau_1, \tau_2)\) is \((\tau_1, \tau_2)\)-semi-pre \(T_{1/4} \) space then every singleton of \(X \) is \((\tau_1, \tau_2)\)-semiclosed or \((\tau_1, \tau_2)\)-semi-preopen.

PROOF

Let \(x \in X \) and assume that \(\{ x \} \) is not \((\tau_1, \tau_2)\)-semiclosed. Then \(X - \{ x \} \) is not \((\tau_1, \tau_2)\)-semiopen. This implies that the only \((\tau_1, \tau_2)\)-semi open set containing \(X - \{ x \} \) is \(X \). And hence \(X - \{ x \} \) is \((\tau_1, \tau_2)\)-semi-pre closed or equivalently \(\{ x \} \) is \((\tau_1, \tau_2)\)-semi-preopen.

THEOREM 6.3.5

If every singleton of \((X, \tau_1, \tau_2)\) is \((\tau_1, \tau_2)\)-semiclosed or \((\tau_1, \tau_2)\)-preopen, then \(X \) is \((\tau_1, \tau_2)\)-semipre \(T_{1/4} \).
PROOF

Let \(A \) be a \((\tau_1, \tau_2)\) - spg closed subset of \((X, \tau_1, \tau_2)\).

Clearly \(A \subseteq (\tau_1, \tau_2)\) - spcl \((A)\). ---- ---- (15)

Let \(x \in (\tau_1, \tau_2)\) - spcl \((A)\). By assumption \(\{x\} \) is \((\tau_1, \tau_2)\) - semi closed or

\((\tau_1, \tau_2)\) - preopen.

Case (i) Suppose \(\{x\} \) is \((\tau_1, \tau_2)\) - semiclosed. Then by theorem [6.2.12]

\((\tau_1, \tau_2)\) - spcl \((A)\) - \(A \) does not contain \(\{x\} \).

Since \(x \in (\tau_1, \tau_2)\) - spcl \((A)\), we have \(x \in A \).

Case (ii) Let \(\{x\} \) is \((\tau_1, \tau_2)\) - preopen. Then \(\{x\} \) is \((\tau_1, \tau_2)\) - semi-preopen.

Since \(x \in (\tau_1, \tau_2)\) - spcl \((A)\), we have \(\{x\} \cap A \neq \emptyset \), then \(x \in A \).

So in any case \((\tau_1, \tau_2)\) - spcl \((A)\) \(\subseteq \) \(A \). ---- ---- (16)

From (15) and (16) we have \(A = (\tau_1, \tau_2)\) - spcl \((A)\).

That is \(A \) is \((\tau_1, \tau_2)\) - semi-pre closed.

Therefore \((X, \tau_1, \tau_2)\) is semi-pre \(T_{\frac{1}{4}} \).
DEFINITION 6.3.6

A space \((X, \tau_1, \tau_2)\) is called \((\tau_1, \tau_2)\) - semi-pre \(T_{1/2}\) space if every

\((\tau_1, \tau_2)\) - generalized semi-pre closed set of \((X, \tau_1, \tau_2)\) is

\((\tau_1, \tau_2)\) - semi-preclosed.

THEOREM 6.3.7

Every \((\tau_1, \tau_2)\) - semi-pre \(T_{1/2}\) space is \((\tau_1, \tau_2)\) - semi-pre \(T_{1/4}\) space.

PROOF

Let \((X, \tau_1, \tau_2)\) be a \((\tau_1, \tau_2)\) - semi-pre \(T_{1/2}\) space.

Let \(A\) be any \((\tau_1, \tau_2)\) - semi-pre generalized closed set of \((X, \tau_1, \tau_2)\).

But by theorem [6.2.9] \(A\) is \((\tau_1, \tau_2)\) - generalized semi-pre closed set of

\((X, \tau_1, \tau_2)\). Also \((X, \tau_1, \tau_2)\) is \((\tau_1, \tau_2)\) - semi-pre \(T_{1/2}\) implies \(A\) is

\((\tau_1, \tau_2)\) - semi-preclosed. Thus every \((\tau_1, \tau_2)\) - semi-pre generalized closed set is

\((\tau_1, \tau_2)\) - semi-preclosed. And hence \((X, \tau_1, \tau_2)\) is semi-pre \(T_{1/4}\).

The following example shows that the converse of the above theorem is not true.
EXAMPLE 6.3.8

Let $X = \{a, b, c\}$. Let $\tau_1 = \{\emptyset, X, \{a\}, \{a, c\}\}$ and $\tau_2 = \{\emptyset, X, \{a\}, \{a, b\}\}$ be topologies on X. Then (X, τ_1, τ_2) is (τ_1, τ_2)-semi-pre $T_{1/4}$ space. But X is not (τ_1, τ_2)-semi-pre $T_{1/2}$.

For, take $A = \{a, b\}$. Then A is (τ_1, τ_2)-gsp closed. But A is not (τ_1, τ_2)-semi-pre closed.

Since $\tau_2 \cdot \text{int} (\tau_1 \cdot \text{cl} (\tau_2 \cdot \text{int} (A))) = X \not\subset A$.

DEFINITION 6.3.9

A subset A of a bitological space (X, τ_1, τ_2) is called (τ_1, τ_2)-generalized preregular closed [2.3.1] (briefly (τ_1, τ_2)-gpr closed) if $\tau_2 \cdot \text{pcl} (A) \subset U$ whenever $A \subset U$ and U is (τ_1, τ_2)-regular open in (X, τ_1, τ_2).

DEFINITION 6.3.10

A space (X, τ_1, τ_2) is called (τ_1, τ_2)-preregular $T_{1/2}$ if every
THEOREM 6.3.11

Let A be (τ_1, τ_2) - gpr closed set of (X, τ_1, τ_2). Then τ_2 - pcl (A) - A does not contain nonempty (τ_2, τ_1) - regular closed set.

PROOF

Let F be a (τ_2, τ_1) - regular closed set contained in τ_2 - pcl (A) - A.

Then clearly $A \subseteq X - F$ where A is (τ_1, τ_2) - gpr closed and $X - F$ is (τ_1, τ_2) - regular open. And hence τ_2 - pcl (A) $\subseteq X - F$.

That implies $F \subseteq X - \tau_2$ - pcl (A).

Thus $F \subseteq (X - \tau_2$ - pcl $(A)) \cap (\tau_2$ - pcl (A) - A). That implies $F = \phi$.

THEOREM 6.3.12

For a bitopological space (X, τ_1, τ_2) the following conditions are equivalent:

(i) (X, τ_1, τ_2) is (τ_1, τ_2) - preregular $T_{1/2}$.

(ii) Every singleton of X is either (τ_2, τ_1) - regular closed or τ_2 - preopen.
PROOF

(i) ⇒ (ii)

Let \(x \in X \) and assume that \(\{ x \} \) is not \((\tau_2, \tau_1)\) - regular closed.

Then \(X - \{ x \} \) is not \((\tau_1, \tau_2)\) - regular open.

This implies that the only \((\tau_1, \tau_2)\) - regular open set containing \(X - \{ x \} \) is \(X \) and hence \(X - \{ x \} \) is \((\tau_1, \tau_2)\) - gpr closed.

By (i) \(X - \{ x \} \) is \(\tau_2 \) - preclosed, and hence \(\{ x \} \) is \(\tau_2 \) - preopen.

(ii) ⇒ (i)

Let \(A \subset X \) be \((\tau_1, \tau_2)\) - gpr closed. Let \(x \in \tau_2 - pcl (A) \).

We will show that \(x \in A \).

For, consider the following two cases

Case (i) Let the set \(\{ x \} \) is \((\tau_2, \tau_1)\) - regular closed. Then \(\tau_2 - pcl (A) - A \)
does not contain \(\{ x \} \) [by theorem 6.3.11].

Since \(\{ x \} \in \tau_2 - pcl (A) \), we have \(x \in A \).
(\tau_1, \tau_2) - Semi-pregeneralized closed sets and some functions

Case (ii)

Let \(\{ x \} \) is \(\tau_2 \)-pre open. Since \(x \in \tau_2 \- p\ cl(A) \), we have

\[\{ x \} \cap \tau_2 \- p\ cl(A) \neq \emptyset \] then \(x \in A \). Therefore in both cases \(x \in A \). This shows that \(\tau_2 \- p\ cl(A) \subseteq A \). Always \(A \subseteq \tau_2 \- p\ cl(A) \).

Therefore \(A = \tau_2 \- p\ cl(A) \). And hence \(A \) is \(\tau_2 \)-preclosed set.

THEOREM 6.3.13

Let \(A \) be a \((\tau_1, \tau_2)\) - gsp closed set of \((X, \tau_1, \tau_2)\). Then \((\tau_1, \tau_2) \- spcl(A) \)-A does not contain nonempty \(\tau_1 \)-closed set.

PROOF

Let \(F \) be \(\tau_1 \)-closed set contained in \((\tau_1, \tau_2) \- spcl(A) \)-A.

Then clearly \(A \subseteq X - F \) where \(A \) is \((\tau_1, \tau_2)\) - gsp closed and \(X - F \) is \(\tau_1 \)-open.

And hence \((\tau_1, \tau_2) \- spcl(A) \subseteq X - F \). That implies \(F \subseteq X \- (\tau_1, \tau_2) \- spcl(A) \).

Then \(F \subseteq (X \- (\tau_1, \tau_2) \- spcl(A)) \cap ((\tau_1, \tau_2) \- spcl(A) \- A) \).

That implies \(F \subseteq (X \- (\tau_1, \tau_2) \- spcl(A)) \cap ((\tau_1, \tau_2) \- spcl(A) \- A) = \emptyset \).
(\tau_1, \tau_2) - Semi-pregeneralized closed sets and some functions

This shows that \(F = \phi \).

THEOREM 6.3.14

If every singleton of \(X \) is \(\tau_1 \) - closed or \(\tau_1 \) - open, then \((X, \tau_1, \tau_2) \) is

\[(\tau_1, \tau_2) - semi-pre \ T_{\nu_2}. \]

PROOF

Let \(A \) be a \((\tau_1, \tau_2) - gsp \) closed subset of \((X, \tau_1, \tau_2) \).

Clearly \(A \subset (\tau_1, \tau_2) - spcl (A) \). Let \(x \in (\tau_1, \tau_2) - spcl (A) \).

By assumption \(\{x\} \) is \(\tau_1 \) - closed or \(\tau_1 \) - open.

Case (i) Suppose \(\{x\} \) is \(\tau_1 \) - closed. Then by theorem [6.3.13]

\[(\tau_1, \tau_2) - spcl (A) \] does not contain \(\{x\} \).

Since \(x \in (\tau_1, \tau_2) - spcl (A) \), we have \(x \in A \).

Case (ii) Let \(\{x\} \) is \(\tau_1 \) - open.

Then \(\{x\} \) is \((\tau_1, \tau_2) \) - preopen. And hence \(\{x\} \) is \((\tau_1, \tau_2) \) - semi-preopen

[remark 3.1 of [17]]. Since \(x \in (\tau_1, \tau_2) - spcl (A) \), we have \(\{x\} \cap A \neq \phi \).
And hence $x \in A$. So in any case $(\tau_1, \tau_2) - \text{spcl}(A) \subseteq A$.

Therefore $A = (\tau_1, \tau_2) - \text{spcl}(A)$. That is A is $(\tau_1, \tau_2) - \text{semi-preclosed}$.

That implies (X, τ_1, τ_2) is $(\tau_1, \tau_2) - \text{semi-pre} T_{\frac{1}{2}}$.

\textbf{THEOREM 6.3.15}

A $(\tau_1, \tau_2) - \text{preregular} T_{\frac{1}{2}}$ space is $(\tau_1, \tau_2) - \text{semi-pre} T_{\frac{1}{2}}$ if every (τ_2, τ_1) - regular closed set is τ_1 - closed or τ_1 - open.

\textbf{PROOF}

Let (X, τ_1, τ_2) be a $(\tau_1, \tau_2) - \text{preregular} T_{\frac{1}{2}}$ space, then by the theorem [6.3.12] every singleton of (X, τ_1, τ_2) is (τ_2, τ_1) - regular closed or τ_2 - pre open. By hypothesis every singleton of (X, τ_1, τ_2) is τ_1 - closed or τ_1 - open. Then by theorem [6.3.14] (X, τ_1, τ_2) is $(\tau_1, \tau_2) - \text{semi-pre} T_{\frac{1}{2}}$.

\textbf{THEOREM 6.3.16}

A $(\tau_1, \tau_2) - \text{preregular} T_{\frac{1}{2}}$ space is $(\tau_1, \tau_2) - \text{semi-pre} T_{\frac{1}{4}}$ space if every (τ_2, τ_1) - regular closed set is τ_1 - closed or τ_1 - open.
PROOF

Let X be $(\tau_1, \tau_2) -$ preregular $T_{1/2}$ space.

Then by theorem [6.3.15] X is $(\tau_1, \tau_2) -$ semi-pre $T_{1/2}$.

And hence by theorem [6.3.7] X is $(\tau_1, \tau_2) -$ semi-pre $T_{1/4}$. \hfill \square

6.4 PAIRWISE SEMI-PREGENERALIZED CONTINUOUS FUNCTIONS

DEFINITION 6.4.1

A function $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is said to be pairwise semi-generalized continuous (briefly pairwise sg continuous) if the induced maps

$f: (X, \tau_1) \rightarrow (Y, \sigma_1)$ and $f: (X, \tau_2) \rightarrow (Y, \sigma_2)$ are both semi-generalized (briefly sg continuous) continuous.

DEFINITION 6.4.2

A function $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is said to be pairwise semi-pregeneralized (briefly pairwise spg) continuous if the inverse image of each $\sigma_j -$ closed set of Y is $(\tau_i, \tau_j) -$ spg closed in X where $i \neq j$, $(i, j = 1, 2)$.
REMARK 6.4.3

Every pairwise sg continuous function is pairwise spg continuous but the converse is not true.

For, let $X = \{a, b, c\} = Y$. Let $\tau_1 = \{\phi, X, \{a, b\}\} = \sigma_1$ and $\tau_2 = \{\phi, X, \{b, c\}\} = \sigma_2$. Then τ_1 and τ_2 are topologies on X and σ_1 and σ_2 are topologies on Y.

Define $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ by

$$f(a) = c, f(b) = b \text{ and } f(c) = a.$$ Then f is pairwise spg continuous.

But it is not pairwise sg continuous.

For, take $V = \{c\}$. Then V is σ_1-closed. Then $f^1(V) = \{a\}$.

Take $A = \{a\}$ and $U = \{a, b\}$. Then U is τ_1-semiopen and $A \subseteq U$.

Now τ_1-scl $(A) = X \subseteq U$ therefore the function $f: (X, \tau_1) \to (Y, \sigma_1)$ is not sg continuous. And hence f is not pairwise sg continuous.
DEFINITION 6.4.4

A function $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be pairwise generalized semi-pre continuous (briefly gsp continuous) if the inverse image of each σ_j-closed set of Y is (τ_i, τ_j)-gsp closed in X where $i \neq j, (i, j = 1, 2)$.

THEOREM 6.4.5

Let $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a pairwise spg continuous. Then f is pairwise gsp continuous.

PROOF

Let V be a σ_j-closed set of $(Y, \sigma_1, \sigma_2), j = 1, 2$

Since f is pairwise spg continuous, we have $f^{-1}(V)$ is (τ_i, τ_j)-spg closed in $X, i \neq j (i, j = 1, 2)$.

Since every (τ_i, τ_j)-spg closed is (τ_i, τ_j)-gsp closed, we have $f^{-1}(V)$ is also (τ_i, τ_j)-gsp closed $i \neq j (i, j = 1, 2)$. And hence f is pairwise gsp continuous. \square

The following example shows that the converse of the above theorem is not true.
EXAMPLE 6.4.6

Let $X = \{a, b, c\} = Y$. Let $\tau_1 = \{\phi, X, \{a\}, \{a, b\}\}$ and $\tau_2 = \{\phi, X, \{a\}, \{a, c\}\}$ be topologies on X.

Let $\sigma_1 = \{\phi, Y, \{a\}\}$ and $\sigma_2 = \{\phi, Y, \{b\}\}$ be topologies on Y.

Let $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be the identity function. Then f is pairwise gsp continuous. But it is not pairwise spg continuous.

For, considering the σ_2 - closed set $\{a, c\}$, $f^{-1}(\{a, c\}) = \{a, c\}$.

Also $\{a, c\} \subseteq \{a, c\}$ and $\{a, c\}$ is (τ_1, τ_2) - semiopen.

Now (τ_1, τ_2) - spcl $(\{a, c\}) = X \varsubsetneq \{a, c\}$.

Therefore f is not pairwise spg continuous.

DEFINITION 6.4.7

A function $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is said to be pairwise precontinuous [17] if the inverse image of each σ_j - closed set of Y is (τ_i, τ_j) - preclosed in X,

$i \neq j \ (i, j = 1, 2)$.
THEOREM 6.4.8

Let \(f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) be pairwise precontinuous. Then \(f \) is pairwise spg continuous.

PROOF

Let \(f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) be pairwise precontinuous.

Let \(V \) be an \(\sigma_j \)-closed set of \(Y \) (\(j = 1, 2 \)). Then \(f^i(V) \) is \((\tau_i, \tau_j)\)-preclosed in \(X \), \(i \neq j \), \((i, j = 1, 2) \).

By theorem [6.2.5] \(f^i(V) \) is \((\tau_i, \tau_j)\)-spg closed in \(X \).

And hence every closed set \(V \) of \(\sigma_j \), we have \(f^i(V) \) is \((\tau_i, \tau_j)\)-spg closed.

Therefore \(f \) is pairwise spg continuous.

EXAMPLE 6.4.9

The converse of the above theorem is not true, that is pairwise spg continuous function need not be pairwise precontinuous.

Let \(X = \{a, b, c\} = Y \). Let \(\tau_1 = \{\phi, X, \{a\}, \{c\}, \{a, c\}\} \) and
Let $\tau_2 = \{ \emptyset, X, \{ b \} \}$ be topologies on X.

Let $\sigma_1 = \{ \emptyset, Y, \{ b \}, \{ b, c \} \}$ and $\sigma_2 = \{ \emptyset, Y, \{ a \}, \{ a, c \} \}$

be topologies on Y.

Let $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be the identity function.

Then f is pairwise spg continuous. But f is not pairwise precontinuous.

For, take σ_1-closed set $\{ a \}$. Then $f^{-1}(\{ a \}) = \{ a \}$.

Now $\tau_1 - \text{cl} (\tau_2 - \text{int}(\{ a \})) = \{ a, c \} \subsetneq \{ a \}$.

Therefore $\{ a \}$ is not $($ τ_2, τ_1 $)$-preclosed in X. And hence f is not pairwise precontinuous.