CONTENTS

<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>PAGE NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF FIGURES</td>
<td>IX</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>XIV</td>
</tr>
<tr>
<td>LIST OF SCHEMES</td>
<td>XVI</td>
</tr>
<tr>
<td>LAYOUT OF THE THESIS</td>
<td></td>
</tr>
<tr>
<td>CHAPTER – 1 INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1 1 ELECTROORGANIC SYNTHESIS</td>
<td></td>
</tr>
<tr>
<td>1 1 1 Organic Electrochemistry</td>
<td>1</td>
</tr>
<tr>
<td>1 1 2 Electroorganic synthesis</td>
<td>2</td>
</tr>
<tr>
<td>1 1 3 Electroorganic reaction</td>
<td>4</td>
</tr>
<tr>
<td>1 1 4 Constant current electrolysis</td>
<td>4</td>
</tr>
<tr>
<td>1 1 5 Constant potential electrolysis</td>
<td>4</td>
</tr>
<tr>
<td>1 1 6 Electrolysis with and without diaphragm</td>
<td>5</td>
</tr>
<tr>
<td>1 1 7 Single phase and two-phase electrolysis system</td>
<td>5</td>
</tr>
<tr>
<td>1 2 MEDIATED ELECTROCHEMICAL OXIDATION</td>
<td></td>
</tr>
<tr>
<td>1 2 1 Electrochemical redox system</td>
<td>8</td>
</tr>
<tr>
<td>1 2 2 Advantages of Mediated Electrooxidation</td>
<td>8</td>
</tr>
<tr>
<td>1 3 CERIUM IN MEDIATED ELECTROOXIDATION SYSTEM</td>
<td></td>
</tr>
<tr>
<td>1 3 1 Cerium ion in Mediated Electrooxidation</td>
<td>9</td>
</tr>
<tr>
<td>1 3 2 Synthesis of Cerium derivatives</td>
<td>10</td>
</tr>
<tr>
<td>1 3 3 Cerium(IV) ion</td>
<td>10</td>
</tr>
<tr>
<td>1 3 4 Cenum(III) ion</td>
<td>11</td>
</tr>
<tr>
<td>1 4 METHANESULPHONIC ACID IN MEDIATED ELECTROOXIDATION</td>
<td></td>
</tr>
<tr>
<td>1 4 1 Methanesulphonic acid</td>
<td>13</td>
</tr>
<tr>
<td>1 4 2 Properties of Methanesulphonic acid</td>
<td>15</td>
</tr>
<tr>
<td>1 4 3 Application of Methanesulphonic acid</td>
<td>16</td>
</tr>
<tr>
<td>1 4 3 1 Electrochemical process</td>
<td>17</td>
</tr>
<tr>
<td>1 4 3 2 Batteries and Fuel cells</td>
<td>18</td>
</tr>
<tr>
<td>1 4 3 3 Polymer chemistry</td>
<td>18</td>
</tr>
</tbody>
</table>
5.4 RESULTS AND DISCUSSION

5.4.1 Effect of current density
5.4.1.1 Effect on current efficiency
5.4.1.2 Effect on cerium(III) ion and cerium(IV) ion
5.4.1.3 Effect on cell voltage

5.4.2 Effect of Temperature
5.4.2.1 Effect on current efficiency
5.4.2.2 Effect on current density
5.4.2.3 Effect on cerium(III)
5.4.2.4 Effect on cerium(IV)
5.4.2.5 Effect on cell voltage

5.4.3 Effect of cerium(III) methanesulphonate concentration
5.4.3.1 Effect on cerium(III)
5.4.3.2 Effect on cerium(IV)

5.4.4 Effect of Methanesulphonic acid concentration
5.4.4.1 Effect on cerium(III)
5.4.4.2 Effect on cerium(IV)

5.5 KINETIC STUDY ON ELECTROCHEMICAL PREPARATION OF CERIUM(IV) METHANESULPHONATE

5.6 CONCLUSIONS
REFERENCES

CHAPTER 6

PROCESS OPTIMIZATION – FACTORIAL DESIGN OF EXPERIMENTS FOR MEDIATED ELECTROXIDATION SYSTEM

3.1 INTRODUCTION
3.2 EXPERIMENTAL
3.3 RESULTS AND DISCUSSION
3.3.1 Factorial design of experiment
3.4 CONCLUSIONS
REFERENCES
CHAPTER 7
ELECTROCHEMICAL CELL DESIGN AND DEVELOPMENT FOR MEDIATED ELECTROCHEMICAL OXIDATION - CERIUM(IV)/(III) SYSTEM

7 1 INTRODUCTION

7 2 MEDIATED ELECTROCHEMICAL OXIDATION

7 3 ADVANTAGES OF REDOX SYSTEM IN ELECTROORGANIC SYNTHESIS

7 4 DESIGN AND DEVELOPMENT OF ELECTROCHEMICAL CELLS FOR Ce(III)/Ce(IV) SYSTEM

7 5 EXPERIMENTAL

7 5 1 Divided Electrochemical cells for the generation of Cerium(IV)methanesulphonate

7 5 1 1 Batch cell

7 5 1 2 Batch cell with re-circulation

7 5 1 3 Flow cell - Electro MP cell

7 5 2 Undivided Electrochemical cell for the generation of Cerium(IV)methanesulphonate

7 6 RESULTS AND DISCUSSION

7 6 1 Electrochemical preparation of Cerium(IV)methanesulphonate

7 6 1 1 Amount of Cerium(IV)methanesulphonate generated

7 6 1 2 Current Efficiency

7 6 1 3 Yield

7 6 1 4 Space Time Yield

7 6 1 5 Energy consumption

7 6 2 Studies on divided Electrochemical cells for the generation of Cerium(IV) methanesulphonate

7 6 2 1 Batch cell

7 6 2 2 Batch cell with re-circulation

7 6 2 3 Flow cell - Electro MP cell

7 6 3 Undivided Electrochemical cell for the generation of Cerium(IV) methanesulphonate

7 6 3 1 Study on effect of differential cathode area on current efficiency in undivided cell
CHAPTER 8

OPTIMIZATION ON MEDIATED SYNTHESIS OF AROMATIC QUINONES USING CERIUM(IV) METHANESULPHONATE

8.1 INTRODUCTION .. 148
8.2 Mediated electrochemical oxidation 149
8.3 Mediated electrochemical synthesis of quinones 150
 8.3.1. Synthesis of 1,4-naphthoquinone 150
 8.3.2. Synthesis of 2-methyl 1,4-naphthoquinone 152
 8.3.3 Synthesis of 5-nitro-1,4-naphthoquinone 154
8.4 EXPERIMENTAL
 8.4.1. Mediated electrochemical synthesis of 1,4-naphthoquinone... 155
 8.4.2. Mediated electrochemical synthesis of 2-methyl-1,4-naphthoquinone 156
 8.4.3. Mediated electrochemical synthesis of 5-nitro-1,4-naphthoquinone 156
 8.4.4. Analysis and characterisation 156
8.5 RESULT AND DISCUSSION
 8.5.1 Studies on mediated electrochemical synthesis of 1,4-naphthoquinone .. 157
 8.5.2 Studies on mediated electrochemical synthesis of 2-methyl-1,4-naphthoquinone
 8.5.2.1. Effect of methanesulphonic acid concentration 162
 8.5.2.2. Effect of substrate concentration 165
 8.5.2.3 Effect of temperature 166
 8.5.2.4 Recycling of anolyte 168
8.5.3 Studies on mediated electrochemical synthesis of 5-nitro 1,4-naphthoquinone

8.5.3.1. Effect of temperature .. 170
8.5.3.2. Effect of substrate concentration 173
8.5.3.3. Effect of methanesulphonic acid concentration 175

8.6 CONCLUSIONS ... 177
REFERENCES ... 178

CHAPTER – 9

OPTIMIZATION ON MEDIATED SYNTHESIS OF AROMATIC ALDEHYDES USING CERIUM(IV)METHANESULPHONATE

9.1 INTRODUCTION .. 181
9.2 Mediated electrochemical synthesis 181
9.3 Mediated electrochemical synthesis of aldehydes 184
9.4 EXPERIMENTAL
 9.4.1. Mediated electrochemical synthesis of Benzaldehyde,
 p-chlorobenzaldehyde and o-chlorobenzaldehyde 188
9.4.2 Analysis and characterisation 189
9.5 RESULT AND DISCUSSION
 9.5.1 Studies on mediated synthesis of benzaldehyde 190
 9.5.1.1. Effect of temperature 191
 9.5.1.2. Effect of agitation 191
 9.5.2 Studies on mediated synthesis of p-chlorobenzaldehyde.. 195
 9.5.2.1. Effect of temperature 196
 9.5.2.2. Effect of agitation 196
 9.5.3 Studies on mediated synthesis of o-chlorobenzaldehyde... 200
 9.5.3.1. Effect of temperature 200
 9.5.3.2. Effect of agitation 201

9.6 CONCLUSIONS .. 205
REFERENCES ... 206
CHAPTER 10

MEDIATED ELECTROOXIDATION PROCESS FOR THE PRODUCTION OF 1,4-NAPHTHOQUINONE & BENZALDEHYDE

10.1 INTRODUCTION ... 208
10.2 MEDIATED ELECTROOXIDATION PROCESS 208
10.3 EXPERIMENTAL
 10.3.1. Electrochemical oxidation ... 211
 10.3.2. Chemical oxidation of naphthalene 211
 10.3.3. Chemical oxidation of toluene 211
 10.3.4. Product analysis and characterisation 213
10.4 RESULTS AND DISCUSSION
 10.4.1. Mediated electrooxidation process for cerium(IV) methanesulphonate ... 214
 10.4.1.1 Effect of current density 214
 10.4.1.2 Effect of temperature 215
 10.4.1.3 Effect of electrolyte flow rate 216
 10.5 Studies on chemical oxidation of naphthalene 218
 10.6 Studies on chemical oxidation of toluene 221
 10.7 CONCLUSIONS ... 224
 REFERENCES .. 225

CHAPTER 11

CONCLUSIONS AND SCOPE OF THE FUTURE WORK 226

LIST OF PUBLICATIONS