Chapter 1

Preliminaries

In this chapter we collect the basic definitions and theorems which are needed for the subsequent chapters. For graph theoretic terminology, we refer to [1, 10, 11].

Definition 1.1 A graph G is a finite non-empty set of objects called vertices together with a set of unordered pairs of distinct vertices of G, called edges. The vertex set and the edge set of G are denoted by $V(G)$ or simply V and $E(G)$ or simply E respectively.

The number of vertices in G, denoted by n, is called the order of G, while the number of edges in G, denoted by m, is called the size of G. A graph of order n and size m is called a (n, m)-graph.

If $e = \{u, v\}$ is an edge of a graph G, written $e = uv$, we say that e joins the vertices u and v; u and v are adjacent vertices; u and v are incident with e.

If two vertices are not joined, then we say that they are non-adjacent. If two distinct edges e and f are incident with a common vertex v, then e and f are said to be adjacent to each other.

A set of vertices in a graph is independent if no two vertices in the set are adjacent.
Similarly, a set of edges in a graph is *independent* if no two edges in the set are adjacent.

If two or more edges join the same pair of (distinct) vertices, then these edges are called *parallel edges*. If an edge e joins a vertex v to itself, then e is called to be a *loop*. A graph G without loops and parallel edges is called a *simple graph*.

Definition 1.2 The *degree* of a vertex v in a graph G is the number of edges of G incident with v and is denoted by $\deg_G(v)$ or $\deg(v)$.

A vertex of degree 0 in G is called an *isolated vertex* and a vertex of degree 1 is called a *pendant vertex* or an *end vertex* of G.

A graph is said to be *k-regular* if every vertex of G has degree k.

Definition 1.3 A graph H is called a *subgraph* of G, written $H \subseteq G$, if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$. If $H \subseteq G$ and either $V(H)$ is a proper subset of $V(G)$ or $E(H)$ is a proper subset of $E(G)$, then H is a *proper subgraph* of G.

A *spanning subgraph* of G is a subgraph H with $V(H) = V(G)$.

For any set S of vertices of G, the *induced subgraph* $< S >$ is the maximal subgraph of G with vertex set S. Thus two vertices of S are adjacent in $< S >$ if and only if they are adjacent in G.

Let v be a vertex of a graph G. The induced subgraph $< V(G) - \{v\} >$ is denoted by $G - v$; it is the subgraph of G obtained by the removal of v and edges incident with v. Similarly, if e is an edge of a graph G, then $G - e$ is the subgraph of G having the same vertex set as G and whose edge set consists of all edges of G except e.
Definition 1.4 A graph G is *complete* if every two distinct vertices of G are adjacent. A complete graph of order n is denoted by K_n.

Definition 1.5 A *bipartite graph* G is a graph whose vertex set V can be partitioned into two subsets V_1 and V_2 such that every edge of G joins V_1 with V_2; (V_1, V_2) is called a *bipartition* of G. If G contains every edge joining V_1 and V_2, then G is called a *complete bipartite graph*. The complete bipartite graph with bipartition (V_1, V_2) such that $|V_1| = r$ and $|V_2| = s$ is denoted by $K_{r,s}$.

A *star* is a complete bipartite graph $K_{1,s}$.

Definition 1.6 Let u and v be vertices of a graph G. A $u-v$ *walk* of G is a finite, alternating sequence $u = u_0, e_1, u_1, e_2, \ldots, e_n, u_n = v$ of vertices and edges in G beginning with vertex u and ending with vertex v such that $e_i = u_{i-1}u_i$, $i = 1, 2, \ldots, n$. The number n is called the *length* of the walk. The walk is said to be *open* if u and v are distinct vertices; it is *closed* otherwise. A walk $u_0, e_1, u_1, e_2, u_2, \ldots, e_n, u_n$ is determined by the sequence $u_0, u_1, u_2, \ldots, u_n$ of its vertices and hence we specify this walk by $W : u_0, u_1, u_2, \ldots, u_n$.

A walk in which all the vertices are distinct is called a *path*. A closed walk $u_0, u_1, u_2, \ldots, u_n$ in which $u_0, u_1, u_2, \ldots, u_{n-1}$ are distinct is called a *cycle*. A path on n vertices is denoted by P_n and a cycle on n vertices is denoted by C_n. Given a path P in a graph G and two vertices x, y on P, we use $P[x, y]$ to denote the portion of P between x and y, inclusive of x, and y.

3
Definition 1.7 A graph G is said to be *connected* if any two distinct vertices of G are joined by a path. A maximal connected subgraph of G is called a *component* of G.

Definition 1.8 A *cut-vertex* of a graph G is a vertex whose removal increases the number of components. A *non-separable graph* is connected, non-trivial and has no cut-vertices.

A *block* of a graph is a maximal non-separable subgraph. A graph in which each block is complete is called a *block graph*.

For a cut-vertex v in a connected graph G and a component H of $G - v$, the subgraph H and the vertex v together with all edges joining v and $V(H)$ in G is called a *branch* of G at v. An end-block of G is a block containing exactly one cut-vertex of G. Thus every end-block is a branch of G.

Theorem 1.9 [11] A vertex v of a connected graph G is a cut-vertex of G if and only if there exists vertices u and w distinct from v such that v lies on every $u - w$ path of G.

Definition 1.10 For a vertex v in a connected graph G, $N(v)$ denotes the set of all neighbors of v, and $N[v] = N(v) \cup \{v\}$.

A vertex v in G is an *extreme vertex* if the subgraph induced by $N(v)$ is complete.
Definition 1.11 A graph G is called acyclic if it has no cycles. A connected acyclic graph is called a tree. A non-trivial path is a tree with exactly two end vertices. A graph G with exactly one cycle is called a unicyclic graph.

A caterpillar is a tree of order 3 or more, for which the removal of all end-vertices leaves a path.

Definition 1.12 For vertices u and v in a connected graph G, the distance $d(u, v)$ is the length of a shortest u–v path in G. A u–v path of length $d(u, v)$ is called a u–v geodesic.

The eccentricity $e(v)$ of a vertex v in G is the maximum distance from v and a vertex of G. The minimum eccentricity among the vertices of G is the radius, $\text{rad } G$ and the maximum eccentricity is its diameter, $\text{diam } G$ of G.

It is known that the distance d in a connected graph G is a metric on the vertex set of G. It is also known that the radius and diameter of a connected graph G satisfy the relation $\text{rad } G \leq \text{diam } G \leq 2 \text{ rad } G$. It is proved in [15] that given positive integers a, b such that $a \leq b \leq 2a$, there is a connected graph G whose radius is a and diameter is b.

Two vertices u and v of G are antipodal if $d(u, v) = \text{diam } G$. A vertex v is a peripheral vertex of G if $e(v) = \text{diam } G$. A double star is a tree of diameter 3.

Theorem 1.13 [15] For every connected graph G, $\text{rad } G \leq \text{diam } G \leq 2 \text{ rad } G$.

Definition 1.14 For vertices u and v in a connected graph G, the closed interval $I[u, v]$ consists of all vertices lying on some u - v geodesic of G, while for $S \subseteq V$,
$I[S] = \bigcup_{u,v \in S} I[u,v]$. A set S of vertices of G is a geodetic set if $I[S] = V$, and a geodetic set of minimum cardinality is a minimum geodetic set or a g-set of G. The cardinality of a minimum geodetic set of G is the geodetic number $g(G)$ of G.

For the graph G given in Figure 1.1, no 2-element subset is a geodetic set. The set $S_1 = \{v_1, v_2, v_6\}$ is a geodetic set of G. Also, $S_2 = \{v_1, v_3, v_6\}$ and $S_3 = \{v_2, v_4, v_6\}$ are minimum geodetic sets of G so that $g(G) = 3$. This example shows that there can be more than one minimum geodetic set for a graph.

![Figure 1.1](image_url)

Note that $I(u, v)$ consists of all vertices lying on some $u - v$ geodesic of G except u and v.

The geodetic number of a graph was introduced in [1, 12] and further studied in [2, 7]. It was shown in [12] that determining the geodetic number of a graph is an NP-hard problem.
Theorem 1.15 [5] Each extreme vertex of a connected graph G belongs to every geodetic set of G. In particular, if the set of all extreme vertices S is a geodetic set of G then S is the unique g-set of G.

Theorem 1.16 [5] Let G be a connected graph with a cut-vertex v. Then every geodetic set of G contains at least one vertex from each component of $G - v$.

Theorem 1.17 [7] For the complete graph K_n, $g(K_n) = n$ if and only if $G = K_n$.

Theorem 1.18 [7] For any tree T, the geodetic number $g(T)$ equals the number of end vertices in T. In fact, the set of all end vertices of T is the unique minimum geodetic set of T.

Theorem 1.19 [1] For a connected graph G, $g(G) = 2$ if and only if there exist peripheral vertices u and v such that every vertex of G is on a diametral path joining u and v.

Theorem 1.20 [1] For a connected graph G, no cut-vertex belongs to any g-set of G.

Theorem 1.21 [7] For the complete bipartite graph $K_{r,s}$ ($r, s \geq 2$), $g(K_{r,s}) = \min\{r, s, 4\}$.

Definition 1.22 [7] A connected geodetic set of G is a geodetic set S such that the subgraph $< S >$ induced by S is connected. The minimum cardinality of a connected geodetic set of G is the connected geodetic number of G and is denoted by $g_c(G)$. A
connected geodetic set of cardinality $g_c(G)$ is called a g_c-set of G.

For the graph G in Figure 1.2, $S = \{v_1, v_2, v_3\}$ is the unique minimum geodetic set of G so that $g(G) = 3$. Since, the induced subgraph $< S >$ is not connected, S is not a connected geodetic set of G. It is clear that $S_1 = \{v_1, v_2, v_3, v_4, v_5\}$ is a minimum connected geodetic set of G and so $g_c(G) = 5$.

Theorem 1.23 [14] For a connected graph G, $g_c(G) \geq 1 + \text{diam } G$.

Theorem 1.24 [16] For any non-trivial tree T of order n, $g_c(T) = n$.

Theorem 1.25 [16] For any connected graph G of order $n \geq 2$, $g_c(G) = 2$ if and only if $G = K_2$.

Theorem 1.26 [16] Every cut-vertex of a connected graph G belongs to every connected geodetic set of G.
Definition 1.27 Let S be a minimum geodetic set of G. A subset T of S is called a **forcing subset** for S if S is the unique minimum geodetic set containing T. A forcing subset for S of minimum cardinality is a **minimum forcing subset** of S. The **forcing geodetic number** of S, denoted by $f(S)$, is the cardinality of a minimum forcing subset of S. The **forcing geodetic number** of G, denoted by $f(G)$, is $f(G) = \min\{f(S)\}$, where the minimum is taken over all minimum geodetic sets S in G.

![Figure 1.3](image_url)

For the graph G given in Figure 1.3, $S_1 = \{v_1, v_6, v_7\}$ and $S_2 = \{v_1, v_6, v_8\}$ are the only two minimum geodetic sets of G. It is clear that $f(S_1) = f(S_2) = 1$ so that $f(G) = 1$.

The forcing geodetic number of a graph was introduced and studied in [3].

Throughout the thesis, G denotes a connected graph with at least two vertices.