TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER NO.</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF SYMBOLS AND ABBREVIATIONS</td>
<td>xix</td>
</tr>
</tbody>
</table>

1 INTRODUCTION 1
1.1 GENERAL 1
1.2 THE FINITE ELEMENT MODEL UPDATING PROBLEM 2
1.3 NEED FOR THE STUDY 3
1.4 THE CHALLENGES OF FEM UPDATING 4
1.4.1 Which Aspects of the Model Need to be Updated? 4
1.4.2 How can the Chosen Model be Efficiently Updated? 5
1.4.3 Is the Final Updated Model the Best One? 5
1.5 FLOW CHART DESCRIBING THE METHODOLOGY 6
1.6 RESEARCH WORK OBJECTIVES 7
1.7 LIMITATION OF EXISTING WORK 7
1.8 SUMMARY 8

2 LITERATURE REVIEW 10
2.1 INTRODUCTION 10
2.2 FINITE ELEMENT MODEL UPDATING 10
2.3 DIRECT METHODS OF FEMUP 15
2.4 ITERATIVE METHODS OF FEMUP 16
2.5 MODEL UPDATING USING ANN 18
2.6 PERFORMING SENSITIVE ANALYSIS 19
2.7 SELECTION OF UPDATING PARAMETER 20
2.8 GENERATION OF TRAINING SAMPLES 21
2.9 ITERATIVE TRAINING OF THE ANN 22
2.10 SUMMARY 23

3 FINITE ELEMENT MODEL UPDATING IN STRUCTURAL DYNAMICS 25
3.1 INTRODUCTION 25
3.2 THE PHILOSOPHY OF FINITE ELEMENT MODEL UPDATING 28
3.3 UNIQUEASPECTS OF FINITE ELEMENT MODEL UPDATING 29
3.4 COMPARING TEST RESULTS AND ANALYTICAL MODELS 29
3.5 CORRELATION BETWEEN MEASURED DATA AND ANALYTICAL PREDICTIONS 30
3.6 MODEL TUNING USINGPROPERTY UPDATING METHOD 30
3.7 GLOBAL METHODS 31
3.8 LOCAL METHODS 31
3.9 ERROR LOCALIZATION AND PARAMETER SUBSET SELECTION 31
3.10 SUMMARY 32

4 ANALYSIS OF A SPACE VEHICLE MODEL 34
4.1 EXPERIMENTAL TEST OF A SPACE VEHICLE MODEL 34
 4.1.1 Frequency Response Measurements Test 34
 4.1.2 General Test System Configurations 35
 4.1.3 Supporting the Structure of a Space Vehicle36
4.1.4 Exciting the Structure of a Space Vehicle 39
4.2 FINITE ELEMENT ANALYSIS OF A SPACE VEHICLE MODEL 40
 4.2.1 Finite Element Method 40
 4.2.2 Basic Concept and Procedure for Finite Element Analysis 41
 4.2.3 Typical Work for an Analysis 43
 4.2.4 Meshed Model of a Space Vehicle 56
 4.2.5 Evaluation of Substructure Mass 57
4.3 FREQUENCY OBTAINED FROM EXPERIMENT TEST AND FINITE ELEMENT ANALYSIS 59
4.4 MODE SHAPE COMPARISON 61
4.5 SUMMARY 63

5 SENSITIVITY ANALYSIS BASED SELECTION OF PARAMETER 64
 5.1 INTRODUCTION 64
 5.2 SELECTION OF FINITE ELEMENT MODEL UPDATING PARAMETERS 65
 5.2.1 Substructure Physical Parameters 65
 5.2.2 Finite Element Matrix 65
 5.2.3 Sensitivity Based Selection of updating Parameters 66
 5.2.4 Empirical Based Selection of Updating Parameters 66
 5.3 SENSITIVITY ANALYSIS IN MODEL UPDATING 67
 5.4 SENSITIVE INDEX 68
 5.5 COMMON DIFFICULTIES IN SENSITIVITY ANALYSIS 69
5.6 PROPERTIES OF FIRST STAGE MOTOR OF A SPACE VEHICLE
5.7 VARYING SHELL THICKNESS OF A SPACE VEHICLE FIRST STAGE MOTOR
5.8 VARYING MASS DENSITY OF A SPACE VEHICLE FIRST STAGE MOTOR
5.9 SUMMARY

6 ANNIN MODEL UPDATING
6.1 AN OVERVIEW OF ANN
6.2 OPTIMAL NETWORK ARCHITECTURE
6.3 FEED FORWARD NETWORKS
 6.3.1 Back Propagation Networks (BPN)
6.4 TRAINING OF ANN
6.5 DATA PREPARATION FOR ANN
 6.5.1 Selection of Suitable Inputs / Outputs
 6.5.2 Data Preprocessing
 6.5.3 Model Training and Testing
6.6 STRUCTURE OF BPN NETWORK
6.7 PROBABILISTIC NEURAL NETWORK
6.8 ADVANTAGES OF ANN
6.9 ANN IN STRUCTURAL DYNAMIC PROBLEMS
6.10 UPDATING STRATEGY USING ANN
6.11 TRAINING OF ANN
6.12 SELECTION OF TRAINING SAMPLES
6.13 GENERATION OF TRAINING SAMPLES
6.14 STATISTICAL BASED SELECTION OF TRAINING SAMPLES
 6.14.1 Orthogonal Array Technique
 6.14.2 Construction of Orthogonal Array
6.15 SUMMARY

7 ORTHOGONAL ARRAY METHOD USED FOR TRAINING THE SAMPLES

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>INTRODUCTION</td>
<td>101</td>
</tr>
<tr>
<td>7.2</td>
<td>A TYPICAL ORTHOGONAL ARRAY</td>
<td>102</td>
</tr>
<tr>
<td>7.3</td>
<td>PROPERTIES OF AN ORTHOGONAL ARRAY</td>
<td>103</td>
</tr>
<tr>
<td>7.4</td>
<td>MINIMUM NUMBER OF EXPERIMENTS TO BE CONDUCTED</td>
<td>103</td>
</tr>
<tr>
<td>7.5</td>
<td>ASSUMPTIONS OF THE TAGUCHI METHOD</td>
<td>104</td>
</tr>
<tr>
<td>7.6</td>
<td>DESIGNING AN EXPERIMENT</td>
<td>104</td>
</tr>
<tr>
<td>7.6.1</td>
<td>Selection of the independent variables</td>
<td>105</td>
</tr>
<tr>
<td>7.6.2</td>
<td>Deciding the number of levels</td>
<td>105</td>
</tr>
<tr>
<td>7.6.3</td>
<td>Selection of an orthogonal array</td>
<td>105</td>
</tr>
<tr>
<td>7.6.4</td>
<td>Assigning the independent variables to columns</td>
<td>106</td>
</tr>
<tr>
<td>7.6.5</td>
<td>Conducting the experiment</td>
<td>106</td>
</tr>
<tr>
<td>7.6.6</td>
<td>Analysis of the data</td>
<td>107</td>
</tr>
<tr>
<td>7.7</td>
<td>GENERATION OF TRAINING SAMPLES FOR FIRST STAGE MOTOR OF A SPACE VEHICLE</td>
<td>107</td>
</tr>
<tr>
<td>7.7.1</td>
<td>Sample Set for Initial Training of Neural Network</td>
<td>110</td>
</tr>
<tr>
<td>7.7.2</td>
<td>Formulation of Training Samples</td>
<td>112</td>
</tr>
<tr>
<td>7.7.3</td>
<td>Normalization of Training Samples</td>
<td>114</td>
</tr>
<tr>
<td>7.7.4</td>
<td>Initial Training of the Material Model</td>
<td>114</td>
</tr>
<tr>
<td>7.8</td>
<td>RE-TRAINING OF THE NETWORK</td>
<td>115</td>
</tr>
<tr>
<td>7.9</td>
<td>COMPARISON OF PARAMETER SHIFT FROM THE ORIGINAL DESIGN VALUES</td>
<td>120</td>
</tr>
</tbody>
</table>
7.10 MODE SHAPES FOR FINAL PREDICTION OF UPDATED PARAMETER 121
7.11 RESULT AND DISCUSSION 122
7.12 SUMMARY 123

8 CONCLUSIONS 124

8.1 CONCLUSIONS AND RECOMMENDATION 124
8.2 FUTURE WORK 126

APPENDIX 1 127

REFERENCES 145

LIST OF PUBLICATIONS 159