List of Tables

Table: 2.1
List of heterocystus cyanobacterial strains used in this study 32

Table: 2.2
Nucleotide distance (diagonal) identities between the studied isolate and twenty other closest homologs microbe 34

Table: 2.3
Growth behavior of N. muscorum under single and multiple stresses. O.D. taken at 660nm 37

Table: 2.4
Specific growth rate (µ) per day of Nostoc muscorum under single and multiple stresses 38

Table: 2.5
Growth behavior of A. variabilis under single and multiple stresses. O.D. taken at 660nm 39

Table: 2.6
Specific growth rate (µ) of A. variabilis per day under single and multiple stresses 40

Table: 2.7
Growth behavior of N. muscorum under pesticides and herbicides stresses. O.D. was taken at 660nm for the respective days 41

Table: 2.8
Growth behavior of A. variabilis under pesticides and herbicides stresses. O.D. taken at 660nm 42

Table: 2.9
Specific growth rate (µ) of N. muscorum and A. variabilis under pesticides and herbicides stresses 42

Table: 2.10
Growth in terms of Protein concentration in N. muscorum under single and multiple stresses 44

Table: 2.11
Growth in terms of Protein concentration in A. variabilis under single and multiple stresses 46

Table: 2.12
Growth in terms of Protein concentration in N. muscorum under pesticide and herbicide stress 47
Table: 2.13
Growth in terms of Protein concentration in *A.variabilis* under pesticide and herbicide stress

Table: 3.1
Effect on chlorophyll a synthesis under influence of metals and NaCl on *N.muscorum*

Table: 3.2
Effect on chlorophyll a synthesis under influence of metals and NaCl on *A.variabilis*

Table: 3.3
Effect on chlorophyll a synthesis under influence of pesticide and herbicide on *N.muscorum*

Table: 3.4
Effect on chlorophyll a synthesis under influence of pesticide and herbicide on *A.variabilis*

Table: 3.5
Effect on Phycoerythrin synthesis under influence of metals and NaCl on *N.muscorum*

Table: 3.6
Effect on Phycoerythrin synthesis under influence of metals and NaCl on *A.variabilis*

Table: 3.7
Effect on phycoerythrin synthesis under influence of pesticide and herbicide on *N.muscorum*

Table: 3.8
Effect on phycoerythrin synthesis under influence of pesticide and herbicide on *A.variabilis*

Table: 3.9
Effect on Phycocyanin synthesis under influence of metals and NaCl on *N.muscorum*

Table: 3.10
Effect on Phycocyanin synthesis under influence of metals and NaCl on *A.variabilis*

Table: 3.11
Effect on Phycocyanin synthesis under influence of pesticide and herbicide on *N.muscorum*
Table: 3.12
Effect on Phycocyanin synthesis under influence of pesticide and herbicide on A.variabilis

Table: 3.13
Effect on Carotenoid synthesis under influence of metals and NaCl on N.muscorum

Table: 3.14
Effect on Carotenoid synthesis under influence of metals and NaCl on A.variabilis

Table: 3.15
Effect on Carotenoid synthesis under influence of pesticide and herbicide on N.muscorum

Table: 3.16
Effect on Carotenoid synthesis under influence of pesticide and herbicide on A.variabilis

Table: 4.1.a
Effect of different treatments of metals and NaCl on the SOD activity of N.muscorum

Table: 4.1b
Effect of different treatments of metals and NaCl on the SOD activity of A.variabilis

Table: 4.1.c
Effect of different treatments of pesticide and herbicide on the SOD activity of N.muscorum

Table: 4.1.d
Effect of different treatments of pesticide and herbicide on the SOD activity of A.variabilis

Table: 4.2.a
Effect of different treatments of metals and NaCl on the CAT activity of N.muscorum

Table: 4.2.b
Effect of different treatments of metals and NaCl on the CAT activity of A.variabilis

Table: 4.2.c
Effect of different treatments of pesticide and herbicide on the CAT activity of N.muscorum
Table: 4.2.d
Table Effect of different treatments of pesticide and herbicide on the CAT activity of *A.variabilis*

Table: 4.3.a
Effect of different treatments of metals and NaCl on the APX activity of *N.muscorum*

Table: 4.3.b
Effect of different treatments of metals and NaCl on the APX activity of *A.variabilis*

Table: 4.3.c
Table Effect of different treatments of pesticide and herbicide on the APX activity of *N.muscorum*

Table: 4.3.d
Effect of different treatments of pesticide and herbicide on the APX activity of *A.variabilis*

Table: 4.4.a
Effect of different treatments of metals and NaCl on the MDA activity of *N.muscorum*

Table: 4.4.b
Effect of different treatments of metals and NaCl on the MDA activity of *A.variabilis*

Table: 4.4.c
Effect of different treatments of pesticide and herbicide on the MDA activity of *N.muscorum*

Table: 4.4.d
Effect of different treatments of pesticide and herbicide on the MDA activity of *A.variabilis*

Table: 4.5.a
Effect of different treatments of metals and NaCl on the NO activity of *N.muscorum*

Table: 4.5.b
Effect of different treatments of metals and NaCl on the NO activity of *A.variabilis*

Table: 4.5.c
Effect of different treatments of pesticide and herbicide on the NO activity of *N.muscorum*
Table: 4.5.d
Effect of different treatments of pesticide and herbicide on the NO activity of *A. variabilis*

Table 5.1a
Nitrite uptake activity of *Nostoc muscorum* under single and multiple stresses

Table 5.1b
Nitrite uptake activity of *Anabena variabilis* under single and multiple stresses

Table 5.1c
Nitrite uptake activity of *Nostoc muscorum* under pesticide and herbicide stresses

Table 5.1d
Nitrite uptake activity of *Anabena variabilis* under pesticide and herbicide stresses

Table: 5.2a
Nitrate reductase activity of *Nostoc muscorum* under single and multiple stresses

Table: 5.2b
Nitrate reductase activity of *Anabena variabilis* under single and multiple stresses treatment

Table: 5.2c
Nitrate reductase activity of *Nostoc muscorum* under pesticide and herbicide stresses

Table: 5.2d
Nitrate reductase activity of *Anabena variabilis* under pesticide and herbicide stresses

Table: 5.3a
Nitrite reductase activity of *Nostoc muscorum* under single and multiple stresses

Table: 5.3b
Nitrite reductase activity of *Anabena variabilis* under single and multiple stresses

Table: 5.3c
Nitrate reductase activity of *Nostoc muscorum* under pesticide and herbicide stresses
Table: 5.3d
Nitrate reductase activity of *Anabena variabilis* under pesticide and herbicide stresses. The medium was supplied with 0.1M Potassium nitrate.

Table: 5.4a
Nitrate uptake activity of *Nostoc muscorum* under various stresses.

Table: 5.4b
Nitrate uptake activity of *Anabena variabilis* under various stresses.

Table: 5.4c
Nitrate uptake activity of *Nostoc muscorum* under pesticide and herbicide stresses.

Table: 5.4d
Nitrate uptake activity of *Anabena variabilis* under pesticide and herbicide stresses.

Table: 6.1
Concentration of metal uptake (µg/ml) in presence of metal and salinity stress in *Nostoc muscorum*.

Table: 6.2
Concentration of metal uptake (µg/ml) in presence of metal and salinity stress in *Anabena variabilis*.

Table: 6.3
Concentration present before and after the accumulation of pesticide and herbicide by cyanobacteria.

Table: 6.4
Effect of *N.muscorum* on germination of rice seeds.

Table: 6.6
Yield data of field demonstration of *Nostoc muscorum* as biofertilizer conducted in paddy field.

Table: 6.7
Effect of *A.variabilis* on germination of rice seeds.

Table: 6.8
Yield data of field demonstration of *Nostoc muscorum* as biofertilizer conducted in paddy field.
List of Figures

Fig:1.1
Structure of cyanobacterial cell

Fig:2.1
(a) Colonies of cyanobacterial isolate in pure form
(b) Microscopic view of the isolate

Fig:2.2
Axenic cultures of cyanobacterial isolate in log phase

Fig:2.3
DNA band of cyanobacterial isolate on Agarose gel

Fig:2.4
Phylogenetic Tree made in MEGA 3.1 software using Neighbor Joining method

Fig:2.5
Maintenance of Axenic cultures of *N.muscorum* and *A.variabilis* under
(a) Metals
(b) Metal and salinity
(c) Pesticide and herbicide stresses

Fig:2.6
Growth behavior of *N.muscorum* under
(a) Single Stress
(b) Multiple Stresses

Fig:2.7
Specific growth rate *N.muscorum* under single and multiple Stresses

Fig:2.8
Growth behavior of *A.variabilis* under
(a) Single Stress
(b) Multiple Stresses

Fig:2.9
Specific growth rate *A. variabilis* under single and multiple stresse

Fig:2.10
Growth behavior of
(a) *N.muscorum*
(b) *A.variabilis* under pesticide & herbicide stresses

Fig:2.11
Specific growth rate *N.muscorum* and *A.variabilis* under pesticide and herbicide stresses
Fig: 2.12
Protein concentration in *Nostoc muscorum* in response to single stress

Fig: 2.13
Protein concentration in *N. muscorum* in response to multiple stresses

Fig: 2.14
Protein concentration in *A. variabilis* in response to single stress

Fig: 2.15
Protein concentration in *A. variabilis* in response to multiple stresses

Fig: 2.16
Protein concentration in
(a) *N. muscorum*
(b) *A. variabilis* in response to pesticide and herbicide stress

Fig: 2.17
Effects on polypeptide pattern on total protein. *N. muscorum*
(a) single (b) multiple stresses. *A. variabilis*
(c) single (b) multiple stresses
Pesticide and herbicide stresses (e) *N. muscorum* (f) *A. variabilis* as analyzed on SDS-PAGE. C is control culture with no stress. M represents the molecular weight marker. Equal amounts of proteins were loaded into each well

Fig: 2.18
Morphological and structural changes in *N. muscorum* under single stress

Fig: 2.19
Morphological and structural changes in *N. muscorum* under multiple stress

Fig: 2.20
Morphological and structural changes in *A. variabilis* under single stress

Fig: 2.21
Morphological and structural changes in *A. variabilis* under multiple stress

Fig: 2.22
Morphological and structural changes in *N. muscorum* under pesticide and herbicides stresses

Fig: 2.23
Morphological and structural changes in *A. variabilis* under pesticide and herbicides stresses

Fig: 3.1
Pigment system in cyanobacteria (www.jochemnet.de/BOT4404_12.html)

Fig: 3.2
Chlorophyll-a concentration under single and multiple stresses in *N. muscorum*
Fig: 3.3
Chlorophyll-a concentration under single and multiple stresses in *A. variabilis*

Fig: 3.4
Chlorophyll a concentration under pesticide and herbicide stresses in *N. muscorum*

Fig: 3.5
Chlorophyll-a concentration under pesticide and herbicide stresses in *A. variabilis*

Fig: 3.6
Phycoerythrin concentration under single and multiple stresses in *N. muscorum*

Fig: 3.7
Phycoerythrin concentration under single and multiple stresses in *A. variabilis*

Fig: 3.8
Phycoerythrin concentration under pesticide and herbicide stresses in *N. muscorum*

Fig: 3.9
Phycoerythrin concentration under pesticide and herbicide stresses in *A. variabilis*

Fig: 3.10
Phycocyanin concentration under single and multiple stresses in *N. muscorum*

Fig: 3.11
Phycocyanin concentration under single and multiple stresses in *A. variabilis*

Fig: 3.12
Phycocyanin concentration under herbicide and pesticide stresses in *N. muscorum*

Fig: 3.13
Phycocyanin concentration under pesticide and herbicide stresses in *A. variabilis*

Fig: 3.14
Carotenoid concentration under single and multiple stresses in *N. muscorum*

Fig: 3.15
Carotenoid concentration under single and multiple stresses in *A. variabilis*
Fig: 3.16
Carotenoid concentration under pesticide and herbicide stresses in *N.muscorum*

Fig: 3.17
Carotenoid concentration under pesticide and herbicide stresses in *A.variabilis*

Fig: 4.1
Superoxide dismutase (SOD) activity under single and multiple stresses (a) *N.muscorum* (b) *A.variabilis*. Pesticide and herbicide stresses (c) *N.muscorum* (d) *A.variabilis*

Fig: 4.2
Catalase (CAT) activity under single and multiple stresses. (a) *N.muscorum* (b) *A.variabilis*. Pesticide and herbicide stress (c) *N.muscorum* (d) *A.variabilis*

Fig: 4.3
Ascorbate per oxidase (APX) activity under single and multiple stresses. (a) *N.muscorum* (b) *A.variabilis*. Pesticide and herbicide stresses. (c) *N.muscorum* (d) *A.variabilis*

Fig: 4.4
Lipid per oxidation (LPO) activity under single and multiple stresses. (a) *N.muscorum* (b) *A.variabilis*. Pesticide and herbicide stresses. (c) *N.muscorum* (d) *A.variabilis*

Fig: 4.5
Nitric oxide (NO) activity under single and herbicide stresses. (a) *N.muscorum* (b) *A.variabilis*. Pesticide and herbicide stresses. (c) *N.muscorum* (d) *A.variabilis*

Fig: 5.1
Nitrate and nitrite reductase structures (Department of Horticulture and Landscape Architecture, HORT640 - Metabolic Plant Physiology)

Fig: 5.2a
Enzymatic activity of nitrate reductase shown by *Nostoc muscorum* under single and multiple stresses

Fig: 5.2b
Enzymatic activity of nitrate reductase shown by *Anabena variabilis* under single and multiple stresses

Fig: 5.2c
Enzymatic activity of nitrate reductase shown by *Nostoc muscorum* under pesticide and herbicide stresses. Error bars indicate SD of three independent experiments
Fig: 5.2d
Enzymatic activity of nitrate reductase shown by *Anabena variabilis* under pesticide and herbicide stresses

Fig: 5.3a
Enzymatic activity of nitrite reductase shown by *Nostoc muscorum* under single and multiple stresses

Fig: 5.3b
Enzymatic activity of nitrite reductase shown by *Anabena variabilis* under single and multiple stresses

Fig: 5.3c
Nitrate reductase activity shown by *Nostoc muscorum* under pesticide and herbicide stresses

Fig: 5.3d
Nitrate reductase activity shown by *Anabena variabilis* under pesticide and herbicide stresses

Fig: 5.4a
Enzymatic activity of nitrate uptake shown by *Nostoc muscorum* under single and multiple stresses

Fig: 5.4b
Enzymatic activity of nitrate uptake shown by *Anabena variabilis* under single and multiple stresses. Error bars indicate SD of three independent experiments

Fig: 5.4c
Nitrate uptake activity shown by *Nostoc muscorum* under pesticide and herbicide stresses

Fig: 5.4d
Nitrate uptake activity shown by *Anabena variabilis* under pesticide and herbicide stresses

Fig: 5.5a
Enzymatic activity of nitrite uptake shown by *Nostoc muscorum* under single and multiple stresses

Fig: 5.5b
Enzymatic activity of nitrite uptake shown by *Anabena variabilis* under single and multiple stresses

Fig: 5.5c
Nitrite uptake activity shown by *Nostoc muscorum* under pesticide and herbicide stresses
Fig:5.5d
Nitrite uptake activity shown by *Anabena variabilis* under pesticide and herbicide stresses

Fig:6.1
Metal accumulation by *Nostoc muscorum* in presence of metal and salinity stress

Fig:6.2
Metal accumulation by *Anabena variabilis* in presence of metal and salinity stress

Fig:6.3
GC analysis representing the chromatogram for cypermethrin present in (a) standard (b) *N.muscorum* (c) *A.variabilis*

Fig:6.4
GC analysis representing the chromatogram for dimethoate present in (a) standard (b) *N.muscorum* (c) *A.variabilis*

Fig:6.5
GC analysis representing the chromatogram for butachlor present in (a) standard (b) *N.muscorum* (c) *A.variabilis*

Fig:6.6
Rice seeds soaked with water