TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xii</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xiv</td>
</tr>
<tr>
<td></td>
<td>LIST OF SYMBOLS AND ABBREVIATIONS</td>
<td>xxi</td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>VIDEO RESTORATION AND ENHANCEMENT</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>ADDITIVE AND MULTIPLICATIVE NOISES</td>
<td>5</td>
</tr>
<tr>
<td>1.2.1</td>
<td>Gaussian Noise</td>
<td>6</td>
</tr>
<tr>
<td>1.2.2</td>
<td>Impulse (Salt and Pepper) Noise</td>
<td>8</td>
</tr>
<tr>
<td>1.2.3</td>
<td>Speckle Noise</td>
<td>10</td>
</tr>
<tr>
<td>1.3</td>
<td>INTRODUCTION TO CHANGE DETECTION</td>
<td>12</td>
</tr>
<tr>
<td>1.4</td>
<td>PIXEL BASED CHANGE DETECTION</td>
<td>13</td>
</tr>
<tr>
<td>1.5.1</td>
<td>THE IMAGE DIFFERENCE METHOD</td>
<td>13</td>
</tr>
<tr>
<td>1.5.2</td>
<td>Mean Squared Error</td>
<td>15</td>
</tr>
<tr>
<td>1.5.3</td>
<td>Peak Signal to Noise Ratio</td>
<td>15</td>
</tr>
<tr>
<td>1.5.4</td>
<td>Signal to Noise Ratio</td>
<td>16</td>
</tr>
<tr>
<td>1.5.5</td>
<td>Normalized Correlation</td>
<td>16</td>
</tr>
<tr>
<td>1.6</td>
<td>AVERAGE Absolute Difference</td>
<td>17</td>
</tr>
<tr>
<td>1.7</td>
<td>INTRODUCTION TO SUPER - RESOLUTION</td>
<td>19</td>
</tr>
<tr>
<td>1.7.1</td>
<td>Interpolation based Techniques</td>
<td>19</td>
</tr>
<tr>
<td>1.7.1.1</td>
<td>Nearest Neighbor interpolation</td>
<td>20</td>
</tr>
<tr>
<td>1.7.1.2</td>
<td>Bilinear Interpolation</td>
<td>21</td>
</tr>
<tr>
<td>1.7.1.3</td>
<td>Bicubic Interpolation</td>
<td>22</td>
</tr>
<tr>
<td>1.7.2</td>
<td>Example Based super - resolution</td>
<td>23</td>
</tr>
</tbody>
</table>
1.8 MULTI FRAME SUPER - RESOLUTION 24
1.9 GENERAL VIDEO DENOISING TECHNIQUE 25
1.10 LITERATURE SURVEY 26
1.11 PROBLEM FORMULATION 35
1.12 OBJECTIVES 37
1.13 DESIGN OF THE PROPOSED FARE TECHNIQUE 38
1.14 DATASET 40
1.15 ORGANIZATION OF THESIS 41
1.16 SUMMARY 42

2 KEYFRAME RESTORATION 43
2.1 INTRODUCTION 43
2.2 SPATIAL DOMAIN RESTORATION 43
2.3 CVDK ALGORITHM 44
2.4 ADAPTIVE MEDIAN FILTER (AMedF) 45
2.5 CALCULATING THE BASIC AND RELATED GRADIENTS 49
2.6 SPATIAL DENOISING OF IMPULSE NOISE 51
2.7 ADAPTIVE MEAN FILTER (AMF) 58
2.8 SPATIAL DENOISING OF GAUSSIAN NOISE 61
2.9 SUMMARY 67

3 BETWEEN FRAME RESTORATION 68
3.1 INTRODUCTION 68
3.2 CALCULATING THE GRADIENT DIFFERENCE FRAME 68
3.3 DENOISING USING CVDK 69
3.3.1 Algorithm for Copy Function in CVDK 70
3.4 IMPULSE DENOISING USING iCVDK 73
4 SUPER - RESOLUTION

4.1 INTRODUCTION

4.2 STRUCTURE MODULATED SPARSE REPRESENTATION METHOD
 4.2.1 Ridge Regression
 4.2.2 Up Sampling and Down Sampling
 4.2.3 Constrained Optimization
 4.2.4 NLM Filter
 4.2.5 Structured Sparse Representation

4.3 RAPID ADAPTIVE SUPER – RESOLUTION TECHNIQUE
 4.3.1 RAST Algorithm
 4.3.2 Algorithm for Copy Function in RAST

4.4 DEBLOCKING FILTER

4.5 SUMMARY

5 RESULTS AND DISCUSSIONS

5.1 DATASET

5.2 EXPERIMENTAL RESULTS OF IMPULSE DENOISING
 5.2.1 Foreman Sequence with Impulse Noise
 5.2.2 Miss America Sequence with Impulse Noise
 5.2.3 Salesman Sequence with Impulse Noise

5.3 EXPERIMENTAL RESULTS OF GAUSSIAN DENOISING
5.3.1 Foreman Sequence with Gaussian Noise 133
5.3.2 Miss America Sequence with Gaussian Noise 135
5.3.3 Flower Sequence with Gaussian Noise 137

5.4 EXPERIMENTAL RESULTS OF SUPER-RESOLUTION 140
5.4.1 Super-Resolution on set 5 Images 142
5.4.2 Super-Resolution on set 14 Images 144
5.4.3 Super-Resolution on BSD 500 Images 146
5.4.4 Super-Resolution on HD videos from Xiph database 148
5.4.5 Super-Resolution of Foreman video 149

5.5 REAL TIME APPLICATIONS 154
5.5.1 CCTV Recorded Video 154
5.5.2 Sports Video 159
5.5.3 News Video Downloaded From Cable 161

5.6 SUMMARY 164

6 CONCLUSIONS AND FUTURE RESEARCH 165
6.1 CONCLUSIONS 165
6.2 FUTURE SCOPE AND APPLICATIONS 167

REFERENCES 171

LIST OF PUBLICATIONS 177