
CHAPTER 2

Integer Valued Autoregressive Processes

with Generalized Discrete Mittag-Leffler

Marginals

2.1 Introduction

The function Eα(z) =
∞∑
k=0

[
zk

Γ(1 + kα)

]
was first introduced by Mittag-Leffler in 1903

(Erdelyi,1955). Many properties of the function follow from Mittag-Leffler integral represen-

tation

Eα(z) =
1

2πi

∫
C

tα−1et

tα − z
dt

Some results included in this chapter form part of the papers Jose and Mariyamma (2012a) and Jose
and Mariyamma (2012b).
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where the path of integration C is a loop which starts and ends at −∞ and encircles

the circular disc |t| ≤ z
1
α . The popularity of Mittag-Leffler function has considerably in-

creased among engineers and scientists due to its vast potential for applications in several

areas, such as fluid flow, diffusive transport, electric networks, probability theory, statistical

distribution theory etc. Prabhakar (1971) developed a generalization of Mittag-Leffler func-

tion. In Physics, Haubold and Mathai (2000) derived a closed form representation of the

fractional kinetic equation and thermonuclear function in terms of Mittag-Leffler function.

Saxena et al. (2004a, b) extended the result and derived the solutions of a number of

fractional kinetic equations in terms of generalized Mittag-Leffler functions. They obtained

the solution of a unified form of generalized fractional kinetic equations, which provides a

unification and extension of the earlier results. Such behaviors occur frequently in Chem-

istry, Thermodynamical and Statistical analysis. In all such situations the solutions can be

expressed in terms of generalized Mittag-Leffler functions.

Pillai (1990) proved that Fα(x) = 1−Eα(−xα), 0 < α ≤ 1 are distribution functions,

having the Laplace transform φ(t) = (1 + tα)−1, t ≥ 0 which is completely monotone

for 0 < α ≤ 1. He called Fα(x), for 0 < α ≤ 1, a Mittag-Leffler distribution. The Mittag-

Leffler distribution is a generalization of the exponential distribution, since for α = 1, we get

exponential distribution. Jayakumar and Pillai (1993) developed a first order autoregressive

process with Mittag-Leffler marginal distribution. Weron and Kotulski (1996) use Mittag-

Leffler distribution in explaining Cole-Cole relaxation. Seetha Lekshmi and Jose (2002,

2003) extended the results to obtain geometric Mittag-Leffler distributions. Jayakumar

and Ajitha (2003) obtained various results on geometric Mittag-Leffler distributions. Jose

and Abraham (2011) developed new count models with Mittag-Leffler waiting times as

generalization of Poisson process. A discrete version of the Mittag-Leffler distribution was

introduced by Pillai and Jayakumar (1995).

A first order autoregressive model for count (or integer valued) data is developed

through the thinning operator ∗ which is due to Steutel and van Harn (1979). Let X be an
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Z+-valued random variable and γ ∈ (0, 1), then the thinning operator ‘∗’ is defined by

γ ∗X =
X∑
i=1

Vi (2.1.1)

where Vi’s are i.i.d. Bernoulli random variables with P (Vi = 1) = 1− P (Vi = 0) = γ, and

are independent of X . If GX(s) =
∞∑
j=0

P [X = j]sj = E[sX ] represents the probability

generating function (pgf ) of X , then the pgf of γ ∗X is obtained as GX(1− γ + γs).

A sequence {Xn, n ∈ Z} of Z+-valued random variables is said to be an integer-

valued first order autoregressive (INAR(1)) process if for any n ∈ Z,

Xn = γ ∗Xn−1 + εn (2.1.2)

where γ ∈ (0, 1) is the first order autocorrelation coefficient of the process and εn is the

innovation process. Under the assumption of strict stationarity, (2.1.2) can be rewritten in

terms of pgf as

G(s) = G(1− γ + γs)Gε(s), |s| ≤ 1, γ ∈ (0, 1) (2.1.3)

where Gε(s) is a proper pgf.

McKenzie (1986) introduced a class of discrete valued sequences with negative bino-

mial and geometric marginal distributions obtained as discrete analogues of the standard

autoregressive time series models of Lawrance and Lewis (1980), replacing the scalar

multiplication by the thinning operation. We consider the alternate probability generating

function (apgf ) defined as A(s) = G(1-s) = E[(1− s)X ] instead of the pgf in (2.1.2), which

yields an expression analogous to the Laplace transform for positive valued continuous

random variables, so that (2.1.3) can be rewritten as

A(s) = A(γs)Aε(s) (2.1.4)
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for every γ ∈ (0, 1). The above equation (2.1.4), is analogous to the definition of self-

decomposability for continuous random variables.

In this chapter, we consider a generalization of discrete Mittag-Leffler distributions.

We introduce and study the properties of a new distribution called geometric generalized

discrete Mittag-Leffler distribution. Autoregressive processes with geometric generalized

discrete Mittag-Leffler distributions are developed and studied. The distributions are further

extended to develop a more general class of geometric generalized discrete semi-Mittag-

Leffler distributions. The processes are extended to higher orders also. Autoregressive

processes with bivariate discrete semi Mittag-Leffler marginals are developed and their

generalization are also studied. An application with respect to an empirical data on cus-

tomer arrivals in a bank counter is also given. Various areas of potential applications like

human resource development, insect growth, epidemic modeling, industrial risk modeling,

insurance and actuaries, town planning etc. are also discussed.

2.2 Generalized Discrete Mittag-Leffler distribution

Definition 2.2.1. A random variable X on Z+ is said to follow generalized discrete

Mittag-Leffler distribution denoted by GDML(α, c, β), if it has the pgf

G(s) =

{
1

1 + c(1− s)α

}β
; |s| ≤ 1, 0 < α ≤ 1, c > 0, β > 0. (2.2.1)

For β = 1, it is the DML(α). When α = 1, β = 1 and c = q
p

where q = 1 − p, it

reduces to geometric distribution.

Theorem 2.2.1. The GDML(α, c, β) distribution is discrete self-decomposable (or

discrete class L).

Proof: From (2.1.3) the pgf of GDML(α, c, β) is

G(s) =

[
1

1 + cγα(1− s)α

]β [
γα + (1− γα)

1

1 + c(1− s)α

]β
= G(1− γ + γs)Gγ(s).
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Theorem 2.2.2. The GDML(α, c, β) distribution is geometrically infinitely divisible

and hence infinitely divisible.

Proof: Consider the pgf of GDML(α, c, β)

G(s) =

[
1

1 + c(1− s)α

]β
Using the criterion used in Pillai and Sandhya (1990), we see that the GDML(α, c, β) is

geometrically infinitely divisible.

Theorem 2.2.3. Let G(s) be the pgf of a GDML distribution with γ ∈ (0, 1), c > 0, β >

0, 0 < α ≤ 1, |s| ≤ 1. Then there exists a stationary INAR(1) process {Xn, n ∈ Z},
having structure given by (2.1.2) with G(s) as the pgf of its marginal distribution. Also

the marginal distribution of the innovation sequences {εn, n ∈ Z} has apgf Aε(s) given

by

Aε(s) =

{
1 + cγαsα

1 + csα

}β
. (2.2.2)

Proof: In terms of apgf defined as A(s) = G(1−s), the INAR(1) model defined in (2.1.2)

can be rewritten as

AXn(s) = AXn−1(γs)Aεn(s)

Under stationarity it reduces to

AX(s) = AX(γs)Aε(s)

Hence

Aε(s) =
AX(s)

AX(γs)

The INAR(1) with GDML marginals is defined, only if there exists an innovation sequence

{εn} such that Aε(s) is an apgf.
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From (2.2.1)

AX(s) =

{
1

1 + csα

}β
Then we have,

Aε(s) =

{
1 + cγαsα

1 + csα

}β
=

{
γα + (1− γα)

1

1 + csα

}β
Therefore, the innovations εn are β-fold zero-inflated convolutions of DML(α, c, β).

2.2.1 Joint Distribution of (Xn−1, Xn)

The joint pgf of (Xn−1, Xn) is given by

GXn−1,Xn(s1, s2) = E[s
Xn−1

1 s
γ∗Xn−1+εn
2 ]

= Gεn(s2)GXn−1 [s1(1− γ + γs2)]

=

[
1 + cγαsα2
1 + csα2

]β [
1

1 + c{s1(1− γ + γs2)}

]β
By inverting this expression the joint distribution can be obtained. The above expression

is not symmetric in s1 and s2 and hence the process is not time reversible.

2.3 Geometric Generalized Discrete Mittag-Leffler Distribution

Jose et al. (2010) introduced and studied the geometric generalized Mittag-Leffler distri-

bution and its properties. Now we shall introduce its discrete analogue as follows.

Definition 2.3.1. A random variable X on Z+ is said to follow geometric generalized

discrete Mittag-Leffler distribution and write X
d
= GGDML(α, c, β), if it has the apgf,

A(s) =
1

1 + β ln[1 + csα]
; |s| ≤ 1, 0 < α ≤ 1, c > 0, β > 0 (2.3.1)

Remark 2.3.1. The GGDML distribution is geometrically infinitely divisible.
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Theorem 2.3.1. Let X1, X2, · · · , be iid GGDML random variables and Y = X1 +

X2 + · · · + XN(p) where N(p) follows geometric distribution with pdf, P [N(p) = k] =

p(1− p)k−1, k = 1, 2, · · · , 0 < p < 1. Then Y
d
= GGDML(α, c, β

p
).

Proof: Taking the apgf of Y we have,

AY (s) =
∞∑
k=1

{AX(s)}kp(1− p)k−1

=
1

1 + β
p

ln[1 + csα]
.

2.3.1 Geometric Generalized Discrete Mittag-Leffler Processes

In this section, we develop a first order new autoregressive process with geometric gener-

alized discrete Mittag-Leffler marginal distribution.

Theorem 2.3.2. Let {Xn, n ≥ 1} be defined as

Xn =

 εn, with probability p

Xn−1 + εn, with probability (1− p)
(2.3.2)

where {εn} is a sequence of iid random variables. A necessary and sufficient condition

that {Xn} is a strictly stationary Markov process with GGDML(α, c, β) marginals is

that εn are distributed as geometric Mittag-Leffler provided X0 is distributed as geomet-

ric generalized discrete Mittag-Leffler.

Proof: Rewriting (2.3.2) in terms of apgf we have,

AXn(s) = pAεn(s) + (1− p)AXn−1(s)Aεn(s). (2.3.3)

Assuming strict stationarity, it becomes,

AX(s) = Aε(s){p+ (1− p)AX(s)}.
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That is,

Aε(s) =
AX(s)

p+ (1− p)AX(s)

where

AX(s) =
1

1 + β ln[1 + csα]
.

On simplification we get,

Aε(s) =
1

1 + pβ ln[1 + csα]
.

and hence εn
d
= GGDML(α, c, pβ).

The converse part can be proved by the method of mathematical induction as follows.

Now assume that Xn−1
d
= GGDML(α, c, β). Then

AXn−1(s) = Aεn(s){p+ (1− p)AXn−2(s)}

=
1

1 + pβ ln[1 + csα]

[
p+ (1− p)

{
1

1 + β ln[1 + csα]

}]
=

1

1 + β ln[1 + csα]
.

The rest follows similarly.

2.3.2 INAR(p) Process with GGDML Marginal Distribution

Now we consider a pth order integer-valued autoregressive (INAR(p)) process with proba-

bility structure,

Xn =



γ1∗Xn−1 + εn, with probability δ1

γ2∗Xn−2 + εn, with probability δ2

· · · · · · · · ·
· · · · · · · · ·
γp∗Xn−p + εn, with probability δp

(2.3.4)

where 0 < γi, δi ≤ 1, i = 1, 2, · · · , p;
∑p

i=1 δi = 1.
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In terms of apgf the above equation can be written as

AXn(s) = Aεn(s)

p∑
i=1

δiAXn−i(γis).

Assuming strict stationarity it reduces to

AX(s) = Aε(s)

p∑
i=1

δiAX(γis).

Hence

Aε(s) =
AX(s)∑p

i=1 δiAX(γis)
.

For the GGDML marginals, the innovation sequence of the process has apgf,

Aε(s) =
[1 + β ln(1 + csα)]−1∑p

i=1 δi [1 + β ln(1 + cγαi s
α)]−1

. (2.3.5)

For the particular case of γi = γ, for i = 1, 2, · · · , p, (2.3.5) yields the similar pattern of

apgf defined in (2.2.2). Hence with an error sequence {εn} distributed as GGDML random

variables, the pth order GGDML autoregressive processes are properly defined.

2.4 Further Extensions of GDML and GGDML Distributions

In this section we extend the GDML distribution to obtain a more general class of distri-

butions called generalized discrete semi- Mittag-Leffler (GDSML) distribution and study its

properties.

Definition 2.4.1. A random variable X on Z+ is said to follow generalized discrete

semi Mittag-Leffler distribution and write X
d
= GDSML(α, c, β), if it has the pgf given

by

G(s) =

{
1

1 + ψ(1− s)

}β
(2.4.1)

where ψ(s) satisfies the functional equation aψ(s) = ψ(aαs) for all 0 < s < 1.
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Remark 2.4.1. The solution of the functional equation is given by ψ(s) = sαh(s)

where h(s) is a periodic function in ln s with period −2πα
ln a

. This is a special case of

the general equation given in pp.310 in Aczel (1966). For more details see Jayakumar

(1997) and Kagan et al.(1973).

In a similar manner we can define a geometric generalized discrete semi Mittag-Leffler

distribution and write X d
= GGDSML(α, c, β), if it has the pgf,

G(s) =
1

1 + β ln[1 + ψ(1− s)]
(2.4.2)

where ψ(·) satisfies the above conditions. It can also be verified that the GGDSML distri-

bution is geometrically infinitely divisible.

Theorem 2.4.1. Let X1, X2, · · · , are independently and identically distributed geomet-

ric generalized discrete semi Mittag-Leffler random variables with parameters α and β

where Y = X1 + X2 + · · · + XN(p) such that N(p) follows geometric with mean 1
p
,

P [N(p) = k] = p(1− p)k−1, k = 1, 2, · · · , 0 < p < 1. Then Y
d
= GGDSML(α, c, β

p
).

Proof: Taking the apgf of Y we have,

AY (s) =
∞∑
k=1

{AX(s)}kp(1− p)k−1

=
1

1 + β
p

ln[1 + ψ(s)]

Theorem 2.4.2. Geometric Generalized Discrete Semi Mittag-Leffler distribution is

the limit distribution of geometric sum of GDSML (α, β
n
) random variables.

Proof: We have,

(1 + ψ(s))−β =
{

1 + [1 + ψ(s)]
β
n − 1

}−n
is the apgf of a probability distribution since generalized discrete semi Mittag-Leffler distri-
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bution is infinitely divisible. Hence by lemma 3.2 of Pillai (1990)

An(s) =
{

1 + n[1 + ψ(s)]
β
n − 1

}−n
is the apgf of a geometric sum of independently and identically distributed discrete semi

Mittag-Leffler random variables. Taking limit as n→∞

A(s) = lim
n→∞

An(s)

=
{

1 + lim
n→∞

(
n[1 + ψ(s)]

β
n − 1

)}−1
= {1 + β ln[1 + ψ(s)]}−1 .

2.4.1 Geometric Generalized Discrete Semi Mittag-Leffler Processes

Here we develop a first order new autoregressive process with geometric generalized dis-

crete semi Mittag-Leffler marginals.

Theorem 2.4.3. Let {Xn, n ≥ 1} be defined as

Xn =

 εn, with probability p

Xn−1 + εn, with probability 1− p
(2.4.3)

where {εn} is a sequence of i.i.d. random variables. A necessary and sufficient condi-

tion that {Xn} is a strictly stationary Markov process with GGDSML(α, c, β) marginals

is that εn are distributed as geometric generalized discrete semi Mittag-Leffler.

Proof: Rewriting in terms of the apgf, the equation (2.4.3) reduces to

AXn(s) = pAεn(s) + (1− p)AXn−1(s)Aεn(s)

= Aεn(s){p+ (1− p)AXn−1(s)}. (2.4.4)
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When Xn is weak stationary, we have

AX(s) = Aε(s){p+ (1− p)AX(s)}.

This gives,

Aε(s) =
AX(s)

p+ (1− p)AX(s)

where

AX(s) =
1

1 + β ln[1 + ψ(s)]
.

On simplification we get,

Aε(s) =
1

1 + pβ ln[1 + ψ(s)]

and hence εn
d
= GGDSML(α, c, pβ).

The converse part can be proved by the method of mathematical induction as follows.

Now assume that Xn
d
= GGDSML(α, c, β). Then

AXn−1(s) = Aεn(s){p+ (1− p)AXn−2(s)}

=
1

1 + pβ ln[1 + ψ(s)]

[
p+ (1− p)

{
1

1 + β ln[1 + ψ(s)]

}]
=

1

1 + β ln[1 + ψ(s)]
.

The rest follows easily.
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2.4.2 kth Order GGDSML Processes

Consider the kth order autoregressive process.

Xn =



εn, with probability p

Xn−1 + εn, with probability p1

Xn−2 + εn, with probability p2

· · · · · · · · ·
· · · · · · · · ·
Xn−k + εn, with probability pk

(2.4.5)

where p + p1 + p2 + · · · + pk = 1, 0 < p, pi ≤ 1, i = 1, 2, · · · , k and {εn} is a sequence

of i.i.d. random variables independent of {Xn, Xn−1, · · · }. In terms of apgf we have

AXn(s) = pAεn(s) + p1AXn−1(s)Aεn(s) + · · ·+ pkAXn−k(s)Aεn(s)

= Aεn(s){p+ p1AXn−1(s) + · · ·+ pkAXn−k(s)}. (2.4.6)

Under stationarity equilibrium, this gives,

Aε(s) =
AX(s)

p+ (1− p)AX(s)
.

This shows that the results developed in (2.4.3) can be applied in this also. This gives

rise to the kth order geometric generalized discrete semi Mittag-Leffler autoregressive pro-

cesses.

2.5 Bivariate Discrete Semi Mittag-Leffler (BDSML) Distribution

Autoregressive processes whose stationary marginals follow bivariate discrete Mittag-Leffler

distribution have been developed by Jayakumar et al. (2010). The apgf of a random vari-

37



CHAPTER 2. INTEGER VALUED AUTOREGRESSIVE PROCESSES WITH GENERALIZED DISCRETE MITTAG-LEFFLER

MARGINALS

able with bivariate discrete Mittag-Leffler distribution is

A(s1, s2) =
1

(1 + c1s
α1
1 )(1 + c2s

α2
2 )− δ2c1c2sα1

1 s
α2
2

0 < α1, α2 ≤ 1, c1, c2 > 0, δ2 > 0. It is denoted by BDML(α1, α2, c1, c2, δ
2).

In this section, we develop bivariate discrete semi Mittag-Leffler distribution and pro-

cesses.

Definition 2.5.1. A bivariate random variable (X, Y ) on Z+ is said to follow bivariate

discrete semi Mittag-Leffler distribution denoted by, (X, Y )
d
= BDSML(α1, α2, c1, c2, δ

2)

if it has the apgf ,

A(s1, s2) =
1

(1 + ψ1(s1))(1 + ψ2(s2))− δ2ψ1(s1)ψ2(s2)

where ψ(s) satisfies certain conditions given in definition (2.4.1).

Definition 2.5.2. A bivariate random variable (X, Y ) on Z+ is said to follow geometric

BDSML distribution denoted by, (X, Y )
d
= GBDSML(α1, α2, c1, c2, δ

2) if it has the

apgf ,

A(s1, s2) =
1

1 + ln {[1 + ψ1(s1)][1 + ψ2(s2)]− δ2ψ1(s1)ψ2(s2)}

where ψ(s) satisfies certain conditions given in definition (2.4.1).

Remark 2.5.1. Generalized BDSML distribution can be defined as the distribution

with apgf ,

A(s1, s2) =

[
1

(1 + ψ1(s1))(1 + ψ2(s2))− δ2ψ1(s1)ψ2(s2)

]β
where ψ(s) satisfies certain conditions given in definition (2.4.1).
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2.6 Geometric Generalized Bivariate Discrete Semi Mittag-Leffler Dis-

tribution

Definition 2.6.1. A bivariate random variable (X, Y ) on Z+ is said to follow geometric

generalized bivariate discrete Semi Mittag-Leffler distribution denoted by, (X, Y )
d
=

GGBDSML(α1, α2, c1, c2, δ
2, β) if it has the apgf ,

A(s1, s2) =
1

1 + β ln {[1 + ψ1(s1)][1 + ψ2(s2)]− δ2ψ1(s1)ψ2(s2)}

where ψ(s) satisfies certain conditions given in definition (2.4.1).

Remark 2.6.1. Geometric generalized bivariate discrete semi Mittag-Leffler distribu-

tion is geometrically infinitely divisible.

Theorem 2.6.1. Let Ui = (U1i, U2i) and U1, U2, · · · , are independently and identically

distributed geometric generalized bivariate discrete semi Mittag-Leffler random vari-

ables with parameters α1, α2, β and δ2 where T = U1 +U2 + · · ·+UN(p) such that N(p)

follows geometric with mean 1
p
,

P [N(p) = k] = p(1− p)k−1, k = 1, 2, · · · , 0 < p < 1.

Then T
d
= GGBDSML(α1, α2, c1, c2, β, δ

2).

Proof: Taking the apgf of T we have,

AT (s1, s2) =
∞∑
k=1

{AU(s1, s2)}kp(1− p)k−1

=
1

1 + β
p

ln {[1 + ψ1(s1)][1 + ψ2(s2)]− δ2ψ1(s1)ψ2(s2)}
.

Theorem 2.6.2. Geometric generalized bivariate discrete Semi Mittag-Leffler distri-

bution is the limit distribution of geometric sum of GBDSML (α1, α2,
β
n
) random vari-

ables.
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Proof: we have, [1 + (1 + ψ1(s1))(1 + ψ2(s2))− δ2ψ1(s1)ψ2(s2)]
−β

=
{

1 + (1 + [1 + ψ1(s1)][1 + ψ2(s2)]− δ2ψ1(s1)ψ2(s2))
β
n − 1

}−n
is the apgf of a probability distribution since generalized bivariate discrete semi Mittag-

Leffler distribution is infinitely divisible. Hence by lemma 3.2 of Pillai (1990), we have

An(s1, s2) =
{

1 + n[1 + (1 + ψ1(s1))(1 + ψ2(s2))− δ2ψ1(s1)ψ2(s2)]
β
n − 1

}−n
is the apgf of a geometric sum of independently and identically distributed generalized

bivariate discrete semi Mittag-Leffler random variables. Taking limit as n→∞, we get

A(s1, s2) = lim
n→∞

An(s1, s2)

=
{

1 + lim
n→∞

(
n[1 + (1 + ψ1(s1))(1 + ψ2(s2))− δ2ψ1(s1)ψ2(s2)]

β
n − 1

)}−1
=

{
1 + β ln[1 + (1 + ψ1(s1))(1 + ψ2(s2))− δ2ψ1(s1)ψ2(s2)]

}−1
.

2.6.1 GGBDSML Processes

Here we develop a first order new autoregressive process with geometric generalized bi-

variate discrete semi Mittag-Leffler marginals.

Theorem 2.6.3. Let {Un, n ≥ 1} be defined as

Un =

 εn, with probability p

Un−1 + εn, with probability 1− p
(2.6.1)

where {εn} is a sequence of i.i.d. random variables. A necessary and sufficient condi-

tion that {Un} is a strictly stationary Markov process with GGBDSML(α1, α2, c1, c2, β, δ
2)

marginals is that εn are distributed as geometric generalized discrete semi Mittag-

Leffler, where Un = (U1n, U2n) and εn = (ε1n, ε2n) are sequences of bivariate random

variables.
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Proof: Taking the apgf of an equation (2.6.1) we get

AUn(s1, s2) = pAεn(s1, s2) + (1− p)AUn−1(s1, s2)Aεn(s1, s2)

= Aεn(s){p+ (1− p)AUn−1(s1, s2)}. (2.6.2)

Under stationarity it reduces to

AU(s1, s2) = Aε(s1, s2){p+ (1− p)AU(s1, s2)}.

Hence,

Aε(s1, s2) =
AU(s1, s2)

p+ (1− p)AU(s1, s2)

where

AU(s1, s2) =
1

1 + β ln[1 + (1 + ψ1(s1))(1 + ψ2(s2))− δ2ψ1(s1)ψ2(s2)]
.

On simplification we get,

Aε(s1, s2) =
1

1 + pβ ln[1 + (1 + ψ1(s1))(1 + ψ2(s2))− δ2ψ1(s1)ψ2(s2)]

and hence εn
d
= GGBDSML(α1, α2, c1, c2, δ

2, pβ).

The converse part can be proved by the method of mathematical induction as follows. Now

assume that Un
d
= GGBDSML(α1, α2, c1, c2, δ

2, β). Then

AUn−1(s1, s2) = Aεn(s1, s2){p+ (1− p)AUn−2(s1, s2)}

=
1

1 + pβ ln[1 + (1 + ψ1(s1))(1 + ψ2(s2))− δ2ψ1(s1)ψ2(s2)][
p+ (1− p)

{
1

1 + β ln[1 + (1 + ψ1(s1))(1 + ψ2(s2))− δ2ψ1(s1)ψ2(s2)]

}]
=

1

1 + β ln[1 + (1 + ψ1(s1))(1 + ψ2(s2))− δ2ψ1(s1)ψ2(s2)]
.
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The rest follows easily.

2.7 Application to an Empirical Data

In this section we apply the model to a data on the inter-arrival times of customers in a

bank counter measured in terms of number of months from January 1994 to October 2003,

which is taken from the file bank.arrivals.xlsx available in the website www.westminstercolle

ge.edu. The empirical pdf shows a decreasing trend in the probabilities. Figure 1 gives the

empirical pdf and theoretical pdf of GDML(α, c, β).

The mean, variance, coefficient of skewness and kurtosis measure for the data are

respectively 1.5435, 3.2314, 0.9845 and 2.6714. The Durbin-Watson test confirms strong

autocorrelation in the data with first order autocorrelation coefficient 0.92 so that INAR

models are needed to explore the future behaviour of the data. Since the mean is less

than variance the geometric distribution is a possible probability model. Since geometric

distribution is a special case of GDML(α, c, β), we shall examine whether it is a suitable

model to the above data. We obtain the estimates of the parameters as α = 0.99, β = 1

and c = 0.91.

Now we apply the Kolmogorov-Smirnov [K.S.] test for testing H0: GDML distribution

with parameters α = 0.99, β = 1 and c = 0.91 is a good fit for the given data. Since the

computed value of the K.S. test statistic is obtained as 0.1212 and the critical value cor-

responding to the significance level 0.01 is 0.2403, the GDML assumption for inter-arrival

times is justified. Using this we can obtain the probabilities associated with the stationary

distribution of the INAR(1) model as well as predict the future values of the process. This

will help in developing optimal service policies for ensuring customer satisfaction.

2.8 Conclusions

In this chapter we have considered GDML distributions and introduced a new family of

distributions called GGDML distributions and developed integer-valued time series models.

We also developed various generalizations such as GGDSML and INAR (p) processes.
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Figure 2.1: The empirical pdf and theoretical pdf of GDML (0.99, 0.91, 1) distribution.

The use of the model is illustrated by fitting it to an empirical data on customer arrivals in

a bank counter and the goodness of fit is established. The processes developed in this

paper can be used for modeling time series data on counts of events, objects or individuals

at consecutive points in time such as the number of accidents, number of breakdowns in

manufacturing plants, number of busy lines in a telephone network, number of patients

admitted in a hospital, number of claims in an insurance company, number of persons

unemployed in a particular year, number of aero planes waiting for take-off, number of

vehicles in a queue, etc. Thus the models have applications in various contexts like studies

relating to human resource development, insect growth, epidemic modeling, industrial risk

modeling, insurance and actuaries, town planning etc.
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