CHAPTER – IV

\(\hat{\eta}^*-\) HOMEOMORPHISMS IN TOPOLOGICAL SPACES

4.1 Introduction

Maki et al [29] introduced \(g\)-homeomorphisms in topological spaces. The content of this chapter is \(\hat{\eta}^*\)-closed maps, pre \(\hat{\eta}^*\)-closed maps, quasi \(\hat{\eta}^*\)-closed maps and strongly \(\hat{\eta}^*\)-closed maps. The respective \(\hat{\eta}^*\)-open maps are also studied. Then \(\hat{\eta}^*\)-homeomorphisms, strongly \(\hat{\eta}^*\)-homeomorphisms (\(S\hat{\eta}^*\)-homeomorphisms) and \(\hat{\eta}^*\)-quotient maps have been introduced. The new concepts namely \(\hat{\eta}^*\)-regular, ultra \(\hat{\eta}^*\)-regular, \(\hat{\eta}^*\)-normal and ultra \(\hat{\eta}^*\)-normal spaces are also investigated.

4.2 \(\hat{\eta}^*\)-closed maps

T.Noiri, H. Maki and J. Umehara [37] introduced the concepts of \(gp\)-closed and pre \(gp\)-closed map using \(gp\)-closed sets. This section contains \(\hat{\eta}^*\)-closed maps, pre \(\hat{\eta}^*\)-closed maps and their properties in topological spaces have been introduced. Further the properties of these maps are obtained.

Definition 4.2.1 A map \(f: X \to Y\) is said to be \(\hat{\eta}^*\)-closed, if the image of every closed set of \(X\) is \(\hat{\eta}^*\)-closed in \(Y\).

Definition 4.2.2 A map \(f: X \to Y\) is said to be pre-\(\hat{\eta}^*\)-closed if the image of every semi-preclosed set of \(X\) is \(\hat{\eta}^*\)-closed in \(Y\).
Remark 4.2.3 It is obvious that both closedness and pre-\mathcal{H}^*-closedness imply \mathcal{H}^*-closedness. However the converses are false as the following example shows.

Example 4.2.4 Let $X = Y = \{a, b, c\}$, $\tau = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\}$ and $\sigma = \{Y, \emptyset, \{a\}, \{b, c\}\}$. Clearly the identity map $f: (X, \tau) \to (Y, \sigma)$ is \mathcal{H}^*-closed but not closed, since $\{c\}$ is closed in X and $f(\{c\}) = \{c\}$ is not closed in Y.

Example 4.2.5 Let $X = Y = \{a, b, c\}$, $\tau = \{X, \emptyset, \{a\}, \{b, c\}\}$ and $\sigma = \{Y, \emptyset, \{b\}\}$. Clearly the identity map $f: (X, \tau) \to (Y, \sigma)$ is \mathcal{H}^*-closed but not pre-\mathcal{H}^*-closed, since $\{b\}$ is semi-preclosed in X and $f(\{b\}) = b$ is not \mathcal{H}^*-closed in Y.

Theorem 4.2.6 A surjective map $f: X \to Y$ is \mathcal{H}^*-closed if and only if for each subset S of Y and each open set U containing $f^{-1}(S)$, there exists an \mathcal{H}^*-open set V of Y such that $S \subseteq V$ and $f^{-1}(V) \subseteq U$.

Proof:

Necessity. Suppose that f is \mathcal{H}^*-closed. Let S be any subset of Y and U an open set of X containing $f^{-1}(S)$. Put $V = (f(U))^c$. Then V is \mathcal{H}^*-open in Y containing S and $f^{-1}(V) \subseteq U$.

Sufficiency. Let F be any closed set of X. Put $B = (f(F))^c$, then we have $f^{-1}(B) \subseteq F^c$ and F^c is open in X. By hypothesis there exists an \mathcal{H}^*-open set V of Y such that $B \subseteq V$ and $f^{-1}(V) \subseteq F^c$ and so $F \subseteq (f^{-1}(V))^c = f^{-1}(V^c)$. Therefore, we obtain $f(F) = V^c$. Since V^c is \mathcal{H}^*-closed, $f(F)$ is \mathcal{H}^*-closed in Y. This implies that f is \mathcal{H}^*-closed.

Remark 4.2.7 Necessity of the above theorem is proved without assuming that f is surjective. Therefore we can obtain the following Corollary.
Corollary 4.2.8 If \(f: X \rightarrow Y \) is \(\mathcal{H}^* \)-closed, then for any closed set \(F \) of \(Y \) and for any open set \(U \) of \(X \) containing \(f^{-1}(F) \) there exists a semi-preopen set \(V \) of \(Y \) such that \(F \subseteq V \) and \(f^{-1}(V) \subseteq U \).

Proof: By Theorem 4.2.6, there exists an \(\mathcal{H}^* \)-open set \(W \) of \(Y \) such that \(F \subseteq W \) and \(f^{-1}(W) \subseteq U \). Since \(F \) is closed, \(F \) is \(\omega \)-closed. By Theorem 2.4.7, \(F \subseteq \text{spint}(W) \). Put \(V = \text{spint}(W) \) then \(V \) is semi-preopen in \(Y \) such that \(F \subseteq V \) and \(f^{-1}(\text{spint}(W)) \subseteq f^{-1}(W) \subseteq U \) and hence \(f^{-1}(V) \subseteq U \).

Proposition 4.2.9 If \(f: X \rightarrow Y \) is \(\omega \)-irresolute pre-\(\mathcal{H}^* \)-closed and \(A \) is \(\mathcal{H}^* \)-closed in \(X \), then \(f(A) \) is \(\mathcal{H}^* \)-closed in \(Y \).

Proof: Let \(U \) be any \(\omega \)-open set of \(Y \) containing \(f(A) \). Then \(A \subseteq f^{-1}(U) \) and \(f^{-1}(U) \) is \(\omega \)-open in \(X \). Since \(A \) is \(\mathcal{H}^* \)-closed in \(X \), \(\text{spcl}(A) \subseteq f^{-1}(U) \) and hence \(f(A) \subseteq f(\text{spcl}(A)) \subseteq U \). Also since \(f \) is pre-\(\mathcal{H}^* \)-closed and \(\text{spcl}(A) \) is semi-pre closed in \(X \), \(f(\text{spcl}(A)) \) is \(\mathcal{H}^* \)-closed in \(Y \) and hence \(\text{spcl}(f(A)) \subseteq \text{spcl}(f(\text{spcl}(A))) \subseteq U \). This shows that \(f(A) \) is \(\mathcal{H}^* \)-closed in \(Y \).

Remark 4.2.10 The following example shows that the composition of two \(\mathcal{H}^* \)-closed maps is not \(\mathcal{H}^* \)-closed.

Example 4.2.11 Let \(X = Y = Z = \{a, b, c\} \), \(\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\} \), \(\sigma = \{Y, \phi, \{a\}, \{b, c\}\} \) and \(\eta = \{Z, \phi, \{c\}\} \). Let \(f: (X, \tau) \rightarrow (Y, \sigma) \) and \(g: (Y, \sigma) \rightarrow (Z, \eta) \) be identity maps. Then clearly \(f \) and \(g \) are \(\mathcal{H}^* \)-closed maps but \(g \circ f: X \rightarrow Z \) is not \(\mathcal{H}^* \)-closed, since \(\{c\} \) is closed in \(X \) and \(g \circ f(\{c\}) = g(f(\{c\})) = \{c\} = \{c\} \) is not \(\mathcal{H}^* \)-closed in \(Z \).

Proposition 4.2.12 If \(f: X \rightarrow Y \) and \(g: Y \rightarrow Z \) are \(\mathcal{H}^* \)-closed maps with \(Y \) is a \(T_{\mathcal{H}^*} \)-space, then \(g \circ f: X \rightarrow Z \) is also an \(\mathcal{H}^* \)-closed map.

Proof: Clearly follows from Definitions.
Proposition 4.2.13 Let \(f: X \to Y \) be a map from a space \(X \) to a \(T_{\hat{\eta}^*} \)-space \(Y \).

Then the following are equivalent:

1) \(f \) is \(\hat{\eta}^* \)-closed,

2) \(f \) is closed.

Proof: Follows by Definition 2.5.1.

Proposition 4.2.14 Let \(f: X \to Y \) and \(g: Y \to Z \) be two maps such that \(g \circ f: X \to Z \) is \(\hat{\eta}^* \)-closed.

1) If \(f \) is continuous surjection, then \(g \) is \(\hat{\eta}^* \)-closed;

2) If \(g \) is \(\hat{\eta}^* \)-irresolute and injective, then \(f \) is \(\hat{\eta}^* \)-closed;

3) If \(f \) is \(\hat{\eta}^* \)-continuous surjective and \(X \) is a \(T_{\hat{\eta}^*} \)-space, then \(g \) is \(\hat{\eta}^* \)-closed.

Proof:

i) Let \(A \) be a closed set of \(Y \). Since \(f \) is continuous, \(f^{-1}(A) \) is closed in \(X \). Also since \(g \circ f \) is \(\hat{\eta}^* \)-closed and \(f \) is surjective, \((g \circ f)^{-1}(A) = g(A) \) is \(\hat{\eta}^* \)-closed in \(Z \). Hence \(g \) is \(\hat{\eta}^* \)-closed.

ii) Let \(B \) be a closed set of \(X \). Since \(g \circ f \) is \(\hat{\eta}^* \)-closed, \((g \circ f)(B) \) is \(\hat{\eta}^* \)-closed in \(Z \). Also since \(g \) is \(\hat{\eta}^* \)-irresolute, \(g^{-1}(g \circ f)(B) \) is \(\hat{\eta}^* \)-closed in \(Y \). Since \(g \) is injective, \(f(B) \) is \(\hat{\eta}^* \)-closed in \(Y \). Hence, \(f \) is \(\hat{\eta}^* \)-closed.

iii) Let \(A \) be a closed set of \(Y \). Since \(f \) is \(\hat{\eta}^* \)-continuous, \(f^{-1}(A) \) is \(\hat{\eta}^* \)-closed in \(X \). Also since \(X \) is a \(T_{\hat{\eta}^*} \)-space, we have \(f^{-1}(A) \) is closed in \(X \). Since \(g \circ f \) is closed and \(f \) is surjective, then \((g \circ f)^{-1}(A) = g(A) \) is \(\hat{\eta}^* \)-closed in \(Z \). Hence, \(g \) is \(\hat{\eta}^* \)-closed.
Definition 4.2.15 A space X is said to be ultra \hat{n}^*-regular if for each closed set F of X and each point $x \not\in F$ there exist disjoint \hat{n}^*-open sets U and V such that $F \subset U$ and $x \in V$.

Theorem 4.2.16 In a topological space X, assume that \hat{n}^*-$\text{o}(\tau)$ is closed under any union. Then the following statements are equivalent:

a) X is ultra \hat{n}^*-regular,

b) for every point x of X and every open set V containing x, there exists an \hat{n}^*-open set A such that $x \in A \subset \hat{n}^* \text{cl}(A) \subset V$.

Proof:

$a \Rightarrow b$. Let $x \in X$ and V be an open set containing x. Then V^c is closed and $x \not\in V^c$. By (a) there exist disjoint \hat{n}^*-open sets A and B such that $x \in A$ and $V^c \subset B$. That is $B^c \subset V$. Since every open set is \hat{n}^*-open, V is \hat{n}^*-open. Since B is \hat{n}^*-open, B^c is \hat{n}^*-closed. Therefore, $\hat{n}^* \text{cl}(B^c) \subset V$. Since $A \cap B = \emptyset$, $A \subset B^c$. Therefore, $x \in A \subset \hat{n}^* \text{cl}(A) \subset \hat{n}^* \text{cl}(B^c) \subset V$. Hence, $x \in A \subset \hat{n}^* \text{cl}(A) \subset V$.

$b \Rightarrow a$. Let F be a closed set and $x \not\in F$. This implies that F^c is an open set containing x. By (b) there exists an \hat{n}^*-open set A such that $x \in A \subset \hat{n}^* \text{cl}(A) \subset F^c$. That is, $F \subset (\hat{n}^* \text{cl}(A))^c$. By Proposition 3.2.19, $\hat{n}^* \text{cl}(A)$ is \hat{n}^*-closed. Hence, $(\hat{n}^* \text{cl}(A))^c$ is \hat{n}^*-open. Therefore, A and $(\hat{n}^* \text{cl}(A))^c$ are the required \hat{n}^*-open sets.

Theorem 4.2.17 Assume that \hat{n}^*-$\text{o}(\tau)$ is closed under any union. If $f: X \to Y$ is a continuous open \hat{n}^*-closed surjective map and X is a regular space, then Y is ultra \hat{n}^*-regular.

Proof: Let $y \in Y$ and V be an open set containing y of Y. Let x be a point of X such that $y = f(x)$. Since f is continuous, $f^{-1}(V)$ is open in X. Since X is regular,
there exists an open set \(U \) such that \(x \in U \subset \text{cl}(U) \subset f^{-1}(V) \). Hence, \(y = f(x) \in f(U) \subset f(\text{cl}(U)) \subset V \). Since \(f \) is an \(\tilde{\eta}^* \)-closed map, \(f(\text{cl}(U)) \) is an \(\tilde{\eta}^* \)-closed set contained in the open set \(V \). Since every open set is \(\omega \)-open, \(V \) is \(\omega \)-open. Hence, \(\text{spcl}(f(\text{cl}(U))) \subset V \). Therefore, \(y \in f(U) \subset \tilde{\eta}^*\text{cl}(f(U)) \subset \tilde{\eta}^*\text{cl}(f(\text{cl}(U))) \subset \text{spcl}(f(\text{cl}(U))) \subset V \). This implies that \(y \in f(U) \subset \tilde{\eta}^*\text{cl}(f(U)) \subset V \).

Since \(f \) is an open map and \(U \) is open in \(X \), \(f(U) \) is open in \(Y \). Since every open set is \(\tilde{\eta}^* \)-open, \(f(U) \) is \(\tilde{\eta}^* \)-open in \(Y \). Thus for every point \(y \) of \(Y \) and every open set \(V \) containing \(y \) there exists an \(\tilde{\eta}^* \)-open set \(f(U) \) such that \(y \in f(U) \subset \tilde{\eta}^*\text{cl}(f(U)) \subset V \). Hence by Theorem 4.2.16, \(Y \) is ultra \(\tilde{\eta}^* \)-regular.

Definition 4.2.18 A space \(X \) is said to be ultra \(\tilde{\eta}^* \)-normal if for disjoint closed sets \(A \) and \(B \) of \(X \) there exist disjoint \(\tilde{\eta}^* \)-open sets \(U \) and \(V \) such that \(A \subset U \) and \(B \subset V \).

Theorem 4.2.19 Assume that \(\tilde{\eta}^*o(\tau) \) is closed under any union. If \(f: X \to Y \) is a continuous \(\tilde{\eta}^* \)-closed surjection and \(X \) is a normal space, then \(Y \) is ultra \(\tilde{\eta}^* \)-normal.

Proof: Let \(A \) and \(B \) be disjoint closed sets of \(Y \). Since \(X \) is normal there exist disjoint open sets \(U \) and \(V \) of \(X \) such that \(f^{-1}(A) \subset U \) and \(f^{-1}(B) \subset V \). By Theorem 4.2.6, there exist \(\tilde{\eta}^* \)-open sets \(G \) and \(H \) such that \(A \subset G \), \(B \subset H \) and \(f^{-1}(G) \subset U \) and \(f^{-1}(H) \subset V \). Then we have \(f^{-1}(G) \cap f^{-1}(H) = \emptyset \) and hence \(G \cap H = \emptyset \). Since \(G \) is \(\tilde{\eta}^* \)-open and \(A \) is closed, \(A \subset G \) implies that \(A \subset \text{spint}(G) \subset \tilde{\eta}^*\text{int}(G) \). Similarly \(B \subset \tilde{\eta}^*\text{int}(H) \). Therefore, \(\tilde{\eta}^*\text{int}(G) \cap \tilde{\eta}^*\text{int}(H) = \emptyset \). Thus \(Y \) is ultra \(\tilde{\eta}^* \)-normal.

Regarding the restriction \(f_A \) of a map \(f: X \to Y \) to a subset \(A \) of \(X \) we have the following:
Theorem 4.2.20 Let X and Y be any two topological spaces. Then

(i) If $f: X \rightarrow Y$ is $\hat{\eta}^*$-closed and A is a closed subset of X then $f_A : (A, \tau_A) \rightarrow (Y, \sigma)$ is $\hat{\eta}^*$-closed.

(ii) If $f: X \rightarrow Y$ is ω- irresolute pre-$\hat{\eta}^*$-closed and A is clopen in X, then $f_A : (A, \tau_A) \rightarrow (Y, \sigma)$ is $\hat{\eta}^*$-closed.

Proof (i): Let F be a closed set of A. Since A is closed in X, F is closed in X and $f(F)$ is $\hat{\eta}^*$-closed in Y. But $f(F) = f_A(F)$. Hence, f_A is $\hat{\eta}^*$-closed.

(ii) Let F be a closed set of A. Hence F is $\hat{\eta}^*$-closed in A and A is clopen in X. By Theorem 2.2.28, F is $\hat{\eta}^*$-closed in X. By Proposition 4.2.9 $f(F) = f_A(F)$ is $\hat{\eta}^*$-closed in Y and hence f_A is $\hat{\eta}^*$-closed.

Theorem 4.2.21 If $f: X \rightarrow Y$ is a bijective $\hat{\eta}^*$-closed map of a space X onto an $\hat{\eta}^*$-connected space Y, then X is connected.

Proof: Let us assume that X is not connected. Then there exist nonempty open sets U and V such that $U \cap V = \emptyset$ and $X = U \cup V$. Therefore U and V are clopen in X and $f(U)$ and $f(V)$ are $\hat{\eta}^*$-closed. Moreover, we have $f(U) \cap f(V) = \emptyset$ and $f(U) \cup f(V) = Y$. Since f is bijective, $f(U)$ and $f(V)$ are non empty. This indicates that Y is not $\hat{\eta}^*$-connected. This is a contradiction.

4.3 Strongly $\hat{\eta}^*$-closed and quasi-$\hat{\eta}^*$-closed maps.

G. B. Navalagi [35] introduced the concepts of strongly α-closed maps and quasi α-closed maps in topological spaces by using α-closed sets in topological spaces. This section contains strongly $\hat{\eta}^*$-closed maps and quasi $\hat{\eta}^*$-closed maps and the relationships between these maps.
Definition 4.3.1 A map \(f: X \to Y \) is said to be strongly \(\hat{\eta}^* \)-closed if for each \(\hat{\eta}^* \)-closed set \(F \) of \(X \), \(f(F) \) is \(\hat{\eta}^* \)-closed in \(Y \).

Definition 4.3.2 A map \(f: X \to Y \) is said to be quasi-\(\hat{\eta}^* \)-closed if for each \(\hat{\eta}^* \)-closed set \(F \) of \(X \), \(f(F) \) is closed in \(Y \).

Proposition 4.3.3 Every quasi-\(\hat{\eta}^* \)-closed map is strongly \(\hat{\eta}^* \)-closed.

Proof: Obvious.

Proposition 4.3.4 Every quasi-\(\hat{\eta}^* \)-closed map is pre-\(\hat{\eta}^* \)-closed.

Proof: The proof follows from the fact that every semi-preclosed set is \(\hat{\eta}^* \)-closed.

Proposition 4.3.5 Every quasi-\(\hat{\eta}^* \)-closed map is closed.

Proof: The proof follows from the fact that every closed set is \(\hat{\eta}^* \)-closed.

Proposition 4.3.6 Every strongly \(\hat{\eta}^* \)-closed map is pre-\(\hat{\eta}^* \)-closed (resp. \(\hat{\eta}^* \)-closed).

Proof: Clearly follows from Definitions.

Example 4.3.7 Let \(X = Y = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\} \) and \(\sigma = \{Y, \phi, \{a\}, \{b, c\}\} \). Clearly the identity map \(f: (X, \tau) \to (Y, \sigma) \) is strongly \(\hat{\eta}^* \)-closed map (resp. pre \(\hat{\eta}^* \)-closed) but not quasi-\(\hat{\eta}^* \)-closed, since \(\{b\} \) is \(\hat{\eta}^* \)-closed in \(X \) but \(f(\{b\}) = \{b\} \) is not closed in \(Y \).

Example 4.3.8 Let \(X = Y = \{a, b, c\}, \tau = \{X, \phi, \{a\}\} \) and \(\sigma = \{Y, \phi, \{a\}, \{b\}, \{a, b\}\} \). Let \(f: (X, \tau) \to (Y, \sigma) \) be the identity map. Clearly \(f \) is a closed map but not quasi-\(\hat{\eta}^* \)-closed, since \(\{b\} \) is \(\hat{\eta}^* \)-closed in \(X \) but \(f(\{b\}) = \{b\} \) is not closed in \(Y \). However \(f \) is pre-\(\hat{\eta}^* \)-closed but not strongly \(\hat{\eta}^* \)-closed, since \(\{a, b\} \) is \(\hat{\eta}^* \)-closed in \(X \) but \(f(\{a, b\}) = \{a, b\} \) is not \(\hat{\eta}^* \)-closed in \(Y \).
Remark 4.3.9 The map defined in Example 4.3.7 is strongly $\mathring{\eta}^*$-closed but not closed. The map defined in Example 4.3.8 is closed but not strongly $\mathring{\eta}^*$-closed. Thus strongly $\mathring{\eta}^*$-closed maps and closed maps are independent of each other. From the above propositions and examples we get the following diagram.

\[
\begin{array}{c}
\text{pre-} \mathring{\eta}^* \text{- closed map} \\
\text{quasi-} \mathring{\eta}^* \text{- closed map} \\
\text{strongly } \mathring{\eta}^* \text{- closed map} \\
\text{closed map}
\end{array}
\]

Theorem 4.3.10 A surjective mapping $f: X \to Y$ is quasi-$\mathring{\eta}^*$-closed if and only if for any subset B of Y and for each $\mathring{\eta}^*$-open set U of X containing $f^{-1}(B)$, there is an open set V of Y containing B and $f^{-1}(V) \subset U$.

Proof: It is similar to the proof of the Theorem 4.2.6.

Theorem 4.3.11 In a topological space X, assume that $\mathring{\eta}^* o(\tau)$ is closed under any union. A map $f: X \to Y$ is quasi-$\mathring{\eta}^*$-closed if and only if for every subset U of X, $\text{cl}(f(U)) \subset f(\mathring{\eta}^* \text{cl}(U))$.

Proof: Let f be quasi- $\mathring{\eta}^*$-closed. We have $U \subset \mathring{\eta}^* \text{cl}(U)$ and also $\mathring{\eta}^* \text{cl}(U)$ is an $\mathring{\eta}^*$-closed set. Hence we obtain $f(U) \subset f(\mathring{\eta}^* \text{cl}(U))$ and $f(\mathring{\eta}^* \text{cl}(U))$ is closed. Hence $\text{cl}(f(U)) \subset f(\mathring{\eta}^* \text{cl}(U))$.

Conversely, assume that the given condition holds. If U is an $\mathring{\eta}^*$-closed in X, then $\text{cl}(f(U)) \subset f(\mathring{\eta}^* \text{cl}(U)) = f(U)$. Consequently, $f(U) = \text{cl}(f(U))$ and hence f is quasi-$\mathring{\eta}^*$-closed.
Theorem 4.3.12 In a topological space X, assume that $\hat{\eta}^*\circ(\tau)$ is closed under any union. A map $f: X \to Y$ is strongly $\hat{\eta}^*$-closed if and only if for every subset U of X, $\hat{\eta}^*\text{cl}(f(U)) \subseteq f(\hat{\eta}^*\text{cl}(U))$.

Proof: Similar to the proof of the Theorem 4.3.11.

Proposition 4.3.13 Let $f: X \to Y$ and $g: Y \to Z$ be two strongly $\hat{\eta}^*$-closed mappings. Then $g \circ f: Y \to Z$ is a strongly $\hat{\eta}^*$-closed mapping.

Proof: Obvious.

Theorem 4.3.14 If $f: X \to Y$ and $g: Y \to Z$ are two mappings such that $g \circ f: Y \to Z$ is strongly $\hat{\eta}^*$-closed. Then

1) f is $\hat{\eta}^*$ irresolute and surjective implies that g is strongly $\hat{\eta}^*$-closed.

2) g is an $\hat{\eta}^*$-irresolute injection implies that f is strongly $\hat{\eta}^*$-closed.

Proof: It is similar to the proof of the Proposition 4.2.14.

Theorem 4.3.15 Assume that $\hat{\eta}^*\circ(\tau)$ is closed under any union. If $f: X \to Y$ is a continuous strongly $\hat{\eta}^*$-closed bijective map and X is an ultra $\hat{\eta}^*$-regular space, then Y is ultra $\hat{\eta}^*$-regular.

Proof: Let $y \in Y$ and V be an open set containing y. Let x be a point of X such that $y = f(x)$. Since f is continuous, $f^{-1}(V)$ is open in X. By Theorem 4.2.16, there exists an $\hat{\eta}^*$-open set U such that $x \in U \subseteq \hat{\eta}^*\text{cl}(U) \subseteq f^{-1}(V)$. Then $y \in f(U) \subseteq f(\hat{\eta}^*\text{cl}(U)) \subseteq V$. By Proposition 3.2.19, $\hat{\eta}^*\text{cl}(U)$ is $\hat{\eta}^*$-closed. Since f is a strongly $\hat{\eta}^*$-closed map, $f(\hat{\eta}^*\text{cl}(U))$ is an $\hat{\eta}^*$-closed set. Since every open set is ω-open [50], V is ω-open. Therefore, we have $\hat{\eta}^*\text{cl}(f(\hat{\eta}^*\text{cl}(U))) \subseteq \text{spcl}(f(\hat{\eta}^*\text{cl}(U))) \subseteq V$. This implies that $y \in f(U) \subseteq \hat{\eta}^*\text{cl}(f(U)) \subseteq \hat{\eta}^*\text{cl}(f(\hat{\eta}^*\text{cl}(U))) \subseteq V$. That is, $y \in f(U) \subseteq \hat{\eta}^*\text{cl}(f(U)) \subseteq V$. Now, U is $\hat{\eta}^*$-open.
implies that U^c is \ast-closed in X. Since f is strongly \ast-closed, $f(U^c)$ is \ast-closed in Y. That is, $(f(U))^c$ is \ast-closed in Y. This implies that $f(U)$ is \ast-open in Y. Thus for every point y of Y and every open set V containing y there exists an \ast-open set $f(U)$ such that $y \in f(U) \subset \ast\text{cl}(f(U)) \subset V$. Hence by Theorem 4.2.16, Y is ultra \ast-regular.

Theorem 4.3.16 If $f: X \to Y$ is a continuous quasi-\ast-closed surjection and X is an ultra \ast-normal space, then Y is normal.

Proof: Let A and B be disjoint closed sets in Y. Since X is ultra \ast-normal, there exist disjoint \ast-open sets U and V of X such that $f^{-1}(A) \subset U$ and $f^{-1}(B) \subset V$. By Theorem 4.3.10, there exist open sets G and H of Y such that $A \subset G$, $B \subset H$ and $f^{-1}(G) \subset U$ and $f^{-1}(H) \subset V$. Then we have $f^{-1}(G) \cap f^{-1}(H) = \emptyset$ and hence $G \cap H = \emptyset$. Thus Y is normal.

Theorem 4.3.17 Let $f: X \to Y$ be a bijective map. Then following hold:

1) If f is a strongly \ast-closed map and Y is an \ast-connected space, then X is \ast-connected.

2) If f is a quasi-\ast-closed map and Y is a connected space, then X is \ast-connected.

Proof: Similar to the proof of the Theorem 4.2.21.

Proposition 4.3.18 Let $f: X \to Y$ from a space X to a $T\ast$-space Y. Then the following are equivalent:

1) f is strongly \ast-closed,

2) f is quasi-\ast-closed.

Proof: Follows by Proposition 4.3.3 and by Definition 2.5.1.

4.4 \hat{n}^*-homeomorphisms

M. Lellis Thivagar [23] introduced the concepts of quasi α-open and strongly α-open mappings using α-sets. In this section \hat{n}^*-open maps, quasi-\hat{n}^*-open maps and strongly \hat{n}^*-open maps in topological spaces have been introduced and also obtained the characterizations of these maps. Further two new homeomorphisms namely \hat{n}^*-homeomorphisms and strongly \hat{n}^*-homeomorphisms ($S\hat{n}^*$-homeomorphisms) have been studied. The set of all $S\hat{n}^*$-homeomorphisms form a group under the operation composition of maps and $S\hat{n}^*$-homeomorphisms is an equivalence relation between topological spaces have been proved.

Definition 4.4.1 A map $f : X \rightarrow Y$ is said to be an \hat{n}^*-open map if the image $f(A)$ is \hat{n}^*-open in Y for each open set A in X.

Example 4.4.2 Let $X = Y = \{a, b, c\}$, $\tau = \{X, \phi, \{a\}, \{a, b\}\}$ and $\sigma = \{Y, \phi, \{a\}\}$. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be an identity map. Here $\hat{n}^*o(\sigma) = P(X) - \{b, c\}$. Then f is an \hat{n}^*-open map.

Theorem 4.4.3 A surjective map $f : X \rightarrow Y$ is \hat{n}^*-open if and only if for any subset S of Y and for any closed set F containing $f^{-1}(S)$, there exists an \hat{n}^*-closed set K of Y containing S such that $f^{-1}(K) \subset F$.

Proof: Similar to the proof of the Theorem 4.2.6.

Theorem 4.4.4 For any bijection $f : X \rightarrow Y$, the following conditions are equivalent:

i) $f^{-1} : Y \rightarrow X$ is \hat{n}^*-continuous,

ii) f is an \hat{n}^*-open map,
iii) \(f \) is an \(\tilde{\eta}^* \)-closed map.

Proof:

(i) \(\Rightarrow \) (ii): Let \(U \) be an open set of \(X \).

By assumption \((f^{-1})^{-1}(U) = f(U) \) is \(\tilde{\eta}^* \)-open in \(Y \) and so \(f \) is \(\tilde{\eta}^* \)-open.

(ii) \(\Rightarrow \) (iii): Let \(F \) be a closed set of \(X \). Then \(F^c \) is open in \(X \). By (ii) \(f(F^c) \) is \(\tilde{\eta}^* \)-open in \(Y \) and therefore \(f(F^c) = (f(F))^c \) is \(\tilde{\eta}^* \)-open in \(Y \). Thus \(f(F) \) is \(\tilde{\eta}^* \)-closed in \(Y \) implies that \(f \) is \(\tilde{\eta}^* \)-closed.

(iii) \(\Rightarrow \) (i): Let \(F \) be a closed set in \(X \). By (iii), \(f(F) \) is \(\tilde{\eta}^* \)-closed in \(Y \). But \(f(F) = (f^{-1})^{-1}(F) \) and therefore \(f^{-1} \) is \(\tilde{\eta}^* \)-continuous.

Definition 4.4.5 A map \(f: X \to Y \) is said to be strongly \(\tilde{\eta}^* \)-open if the image of every \(\tilde{\eta}^* \)-open set in \(X \) is \(\tilde{\eta}^* \)-open in \(Y \).

Definition 4.4.6 A map \(f: X \to Y \) is said to be quasi-\(\tilde{\eta}^* \)-open if the image of every \(\tilde{\eta}^* \)-open set in \(X \) is open in \(Y \).

Theorem 4.4.7 A surjective map \(f: X \to Y \) is quasi-\(\tilde{\eta}^* \)-open if and only if for any subset \(B \) of \(Y \) and any \(\tilde{\eta}^* \)-closed set \(F \) of \(X \) containing \(f^{-1}(B) \), there exists a closed set \(G \) of \(Y \) containing \(B \) such that \(f^{-1}(G) \subset F \).

Proof: Suppose that \(f \) is quasi-\(\tilde{\eta}^* \)-open. Let \(B \subset Y \) and \(F \) be an \(\tilde{\eta}^* \)-closed set of \(X \) containing \(f^{-1}(B) \). Now, put \(G = (f(F))^c \). Then \(G \) is a closed set of \(Y \) containing \(B \) such that \(f^{-1}(G) \subset F \).

Conversely, let \(U \) be an \(\tilde{\eta}^* \)-open set of \(X \) and put \(B = (f(U))^c \). Then \(U^c \) is an \(\tilde{\eta}^* \)-closed set in \(X \) containing \(f^{-1}(B) \). By hypothesis, there exists a closed set \(F \) of \(Y \) such that \(B \subset F \) and \(f^{-1}(F) \subset U^c \). Hence, we obtain \(f(U) \subset F^c \). On the other hand it follows that \(B \subset F, F^c \subset B^c = f(U) \). Thus we obtain \(f(U) = F^c \) which is open in \(Y \) and hence \(f \) is quasi-\(\tilde{\eta}^* \)-open map.
Remark 4.4.8 From the above definitions we obtain the following implications.

quasi-\mathcal{H}^*-open \Rightarrow strongly \mathcal{H}^*-open \Rightarrow \mathcal{H}^*-open. However the reverse implications are not true by the following examples.

Example 4.4.9 Let $X = Y = \{a, b, c\}$, $\tau = \{X, \emptyset, \{a\}\}$, $\sigma = \{X, \emptyset, \{a\}, \{b, c\}\}$. Here $\mathcal{H}^*o(\sigma) = P(X)$ and $\mathcal{H}^*o(\tau) = P(X) - \{b, c\}$. Define a map $f: (X, \tau) \rightarrow (Y, \sigma)$ by $f(a) = b$, $f(b) = c$ and $f(c) = a$. Then f is a strongly \mathcal{H}^*-open map but f is not a quasi-\mathcal{H}^*-open map since $\{b\}$ is \mathcal{H}^*-open in X, but $f(\{b\}) = \{c\}$ is not open in Y.

Example 4.4.10 Let (X, τ) and (Y, σ) be defined as in Example 4.4.2. Here $\mathcal{H}^*o(\tau) = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$. Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be defined as $f(a) = b$, $f(b) = a$ and $f(c) = c$. Clearly f is \mathcal{H}^*-open but f is not strongly \mathcal{H}^*-open, since $\{a, c\}$ is \mathcal{H}^*-open in X but $f(\{a, c\}) = \{b, c\}$ is not \mathcal{H}^*-open in Y.

Theorem 4.4.11 For any bijection $f: X \rightarrow Y$, the following conditions are equivalent:

i) $f^{-1}: Y \rightarrow X$ is \mathcal{H}^*-irresolute,

ii) f is a strongly \mathcal{H}^*-open map,

iii) f is a strongly \mathcal{H}^*-closed map.

Proof: Similar to the proof of the Theorem 4.4.4.

Definition 4.4.12 A bijection $f: X \rightarrow Y$ is called \mathcal{H}^*-homeomorphisms if f is both \mathcal{H}^*-continuous and \mathcal{H}^*-open.

Proposition 4.4.13 Every homeomorphism is an \mathcal{H}^*-homeomorphism but not conversely.
Proof: Follows from Definitions.

Example 4.4.14 Let \(X = Y = \{a, b, c\} \), \(\tau = \{X, \phi, \{a\}, \{b, c\}\} \) and \(\sigma = \{Y, \phi, \{a\}\} \). Let \(f: (X, \tau) \rightarrow (Y, \sigma) \) be a map defined by \(f(a) = b \), \(f(b) = c \) and \(f(c) = a \). Clearly \(f \) is bijective, \(\hat{\eta}^* \)-continuous and \(\hat{\eta}^* \)-open. Hence \(f \) is an \(\hat{\eta}^* \)-homeomorphism but \(f \) is not a homeomorphism, since \(\{b, c\} \) is open in \(X \), \(f(\{b, c\}) = \{a, c\} \) is not open in \(Y \), hence \(f \) is not an open map.

Theorem 4.4.15 Let \(f: X \rightarrow Y \) be a bijective, \(\hat{\eta}^* \)-continuous map. Then the following are equivalent:

i) \(f \) is an \(\hat{\eta}^* \)-open map,

ii) \(f \) is an \(\hat{\eta}^* \)-homeomorphism,

iii) \(f \) is an \(\hat{\eta}^* \)-closed map.

Proof:

(i) \(\iff \) (ii): Obvious from definition.

(ii) \(\iff \) (iii): Suppose that \(f \) is an \(\hat{\eta}^* \)-open map and let \(F \) be a closed set in \(X \). Then \(F^c \) is open in \(X \), hence \(f(F^c) = (f(F))^c \) is \(\hat{\eta}^* \)-open in \(Y \) implies that \(f \) is a closed map. Converse follows by the same technique.

Remark 4.4.16 The composition of two \(\hat{\eta}^* \)-homeomorphisms need not be an \(\hat{\eta}^* \)-homeomorphism as seen from the following example.

Example 4.4.17 Let \(X = Y = Z = \{a, b, c\} \), \(\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\} \), \(\sigma = \{Y, \phi, \{a\}, \{b, c\}\} \) and \(\eta = \{Z, \phi, \{c\}\} \). Let \(f: (X, \tau) \rightarrow (Y, \sigma) \) and \(g: (Y, \sigma) \rightarrow (Z, \eta) \) be identity maps. Clearly \(f \) and \(g \) are \(\hat{\eta}^* \)-homeomorphisms but their composition \(g \circ f: (X, \tau) \rightarrow (Z, \eta) \) is not an \(\hat{\eta}^* \)-homeomorphism, because for
the open set \{a, b\} in X, \(g \circ f\)\({a, b}\) = \{a, b\} which is not an \(\hat{\eta}^*\)-open map and so \(g \circ f\) is not an \(\hat{\eta}^*\)-homeomorphism.

Definition 4.4.18 A bijection \(f: X \rightarrow Y\) is said to be strongly \(\hat{\eta}^*\)-homeomorphism if both \(f\) and \(f^{-1}\) are \(\hat{\eta}^*\)-irresolute.

Example 4.4.19 Let \(X = Y = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}\) and \(\sigma = \{Y, \phi, \{a, b\}\}\). Let \(f: (X, \tau) \rightarrow (Y, \sigma)\) be an identity map. Then \(f\) is a strongly \(\hat{\eta}^*\)-homeomorphism.

We denote the family of all \(\hat{\eta}^*\)-homeomorphisms (resp. strongly \(\hat{\eta}^*\)-homeomorphism) of a topological space \(X\) onto itself by \(\hat{\eta}^*\)-h\((X)\) (resp. \(S\hat{\eta}^*\)-h\((X)\)).

Proposition 4.4.20 Every strongly \(\hat{\eta}^*\)-homeomorphism is an \(\hat{\eta}^*\)-homeomorphism but not conversely. In otherwords for any space \(X\), \(S\hat{\eta}^*\)-h\((X)\) \subset \(\hat{\eta}^*\)-h\((X)\).

Proof: Since every \(\hat{\eta}^*\)-irresolute map is \(\hat{\eta}^*\)-continuous and also from remark 4.4.8, we get the proof.

Example 4.4.21 Let \(X = Y = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{b, c\}\}\) and \(\sigma = \{Y, \phi, \{a\}\}\). Here \(\hat{\eta}^*\)o\((\tau)\) = \(P(X)\) and \(\hat{\eta}^*\)o\((\sigma)\) = \(P(X) - \{b, c\}\). Let \(f: (X, \tau) \rightarrow (Y, \sigma)\) be the map defined by \(f(a) = b, f(b) = c\) and \(f(c) = a\). Clearly \(f\) is an \(\hat{\eta}^\ast\)-homeomorphism. But \(f\) is not a strongly \(\hat{\eta}^*\)-homeomorphism, since \(\{a, b\}\) is \(\hat{\eta}^*\)-open in \(X\) but \((f^{-1})^{-1}\)\((\{a, b\}) = \{b, c\}\) is not \(\hat{\eta}^*\)-open in \(Y\). Hence \(f^{-1}\) is not a \(\hat{\eta}^*\)-irresolute and so \(f\) is not a strongly \(\hat{\eta}^*\)-homeomorphism.
Proposition 4.4.22 If \(f: X \to Y \) and \(g: Y \to Z \) are two strongly \(\tilde{\eta}^* \)-homeomorphisms then their composition \(g \circ f: X \to Z \) is also a strongly \(\tilde{\eta}^* \)-homeomorphism.

Proof: Let \(U \) be an \(\tilde{\eta}^* \)-open set in \(Z \). Now \((g \circ f)^{-1}(U) = f^{-1}(g^{-1}(U)) = f^{-1}(V) \) where \(V = g^{-1}(U) \). By hypothesis, \(V \) is \(\tilde{\eta}^* \)-open in \(Y \) and so again by hypothesis \(f^{-1}(V) \) is \(\tilde{\eta}^* \)-open in \(X \). Thus \(g \circ f \) is \(\tilde{\eta}^* \)-irresolute. Also for an \(\tilde{\eta}^* \)-open set \(G \) in \(X \), we have \((g \circ f)(G) = g(f(G)) = g(W) \) where \(W = f(G) \), by hypothesis \(f(G) \) is \(\tilde{\eta}^* \)-open in \(Y \) and so again by hypothesis, \(g(f(G)) \) is \(\tilde{\eta}^* \)-open in \(Z \). Thus \((g \circ f)^{-1} \) is \(\tilde{\eta}^* \)-irresolute. Hence, \(g \circ f \) is a strongly \(\tilde{\eta}^* \)-homeomorphism.

Theorem 4.4.23 The set \(S\tilde{\eta}^* \cdot h(X) \) is a group under the composition of maps.

Proof: Define a binary operation \(\circ : S\tilde{\eta}^* \cdot h(X) \times S\tilde{\eta}^* \cdot h(X) \to S\tilde{\eta}^* \cdot h(X) \), by \(f \circ g = g \circ f \) for all \(f \) and \(g \) in \(S\tilde{\eta}^* \cdot h(X) \) and \(\circ \) is the usual operation of composition of maps. Then by Proposition 4.4.22, \(g \circ f \in S\tilde{\eta}^* \cdot h(X) \). We know that the composition of maps is associative and the identity map \(i: X \to X \) belonging to \(S\tilde{\eta}^* \cdot h(X) \) serves as the identity element. If \(f \in S\tilde{\eta}^* \cdot h(X) \) then \(f^{-1} \in S\tilde{\eta}^* \cdot h(X) \) such that \(f \circ f^{-1} = f^{-1} \circ f = i \) and so inverse exists for each element of \(S\tilde{\eta}^* \cdot h(X) \). Therefore, \((S\tilde{\eta}^* \cdot h(X), \circ) \) is a group under the composition of maps.

Theorem 4.4.24 Let \(f: X \to Y \) be an \(S\tilde{\eta}^* \)-homeomorphism. Then \(f \) induces an isomorphism from the group \(S\tilde{\eta}^* \cdot h(X) \) onto the group \(S\tilde{\eta}^* \cdot h(Y) \).

Proof: Using the map \(f \), we define a map \(\psi_f : S\tilde{\eta}^* \cdot h(X) \to S\tilde{\eta}^* \cdot h(Y) \) by \(\psi_f(h) = f \circ h \circ f^{-1} \) for each \(h \in S\tilde{\eta}^* \cdot h(X) \). Then \(\psi_f \) is a bijection, further for all \(h_1, h_2 \in S\tilde{\eta}^* \cdot h(X) \), \(\psi_f(h_1 \circ h_2) = f \circ (h_1 \circ h_2) \circ f^{-1} = (f \circ h_1 \circ f^{-1}) \circ (f \circ h_2 \circ f^{-1}) = \psi_f(h_1) \circ \psi_f(h_2) \). Therefore, \(\psi_f \) is a homomorphism and so it induces an isomorphism induced by \(f \).
Theorem 4.4.25 $\mathring{\eta}^*$-homeomorphism is an equivalence relation on the collection of all topological spaces.

Proof: Reflexivity and symmetry are immediate and transitivity follows from Proposition 4.4.22.

4.5 $\mathring{\eta}^*$-quotient map

Lellis Thivagar [22] introduced the concepts of α-quotient map, semi quotient map and pre quotient map. In this section, we introduce the concepts of $\mathring{\eta}^*$-quotient map which is weaker than $\mathring{\eta}^*$-homeomorphism. Further strongly $\mathring{\eta}^*$-quotient map and completely $\mathring{\eta}^*$-quotient map are introduced and the relationships between these maps are obtained.

Definition 4.5.1 A surjective map $f: X \to Y$ is said to be an $\mathring{\eta}^*$-quotient map if f is $\mathring{\eta}^*$-continuous and $f^{-1}(V)$ is open in X implies that V is $\mathring{\eta}^*$-open in Y.

The following proposition is an easy consequence from the definitions

Proposition 4.5.2 Every quotient map is $\mathring{\eta}^*$-quotient but not conversely.

Proof: The proof follows from the Definitions.

Example 4.5.3 Let $X = \{a, b, c, d\}$, $Y = \{a, b, c\}$, $\tau = \{\emptyset, \{a, b\}, X\}$ and $\sigma = \{\emptyset, \{a\}, X\}$. Here $\mathring{\eta}^*(\tau) = P(X) - \{c, d\}$ and $\mathring{\eta}^*(\sigma) = P(X) - \{b, c\}$. Then the map $f: (X, \tau) \to (Y, \sigma)$ defined by $f(a) = a$, $f(b) = b$ and $f(c) = f(d) = c$ is an $\mathring{\eta}^*$-quotient map but not a quotient map.

Proposition 4.5.4 If a map $f: X \to Y$ is surjective, $\mathring{\eta}^*$-continuous and $\mathring{\eta}^*$-open, then f is an $\mathring{\eta}^*$-quotient map.
Proof: We only need to prove that \(f^{-1}(V) \) is open in \(X \) implies that \(V \) is an \(\hat{\eta}^* \)-open set in \(Y \). Let \(f^{-1}(V) \) be open in \(X \). Then \(f(f^{-1}(V)) \) is an \(\hat{\eta}^* \)-open set, since \(f \) is \(\hat{\eta}^* \)-open. Hence, \(V \) is an \(\hat{\eta}^* \)-open set, as \(f \) is surjective and \(f(f^{-1}(V)) = V \). Thus \(f \) is an \(\hat{\eta}^* \)-quotient map.

Proposition 4.5.5 If a map \(f: X \to Y \) is a homeomorphism, then \(f \) is a quotient map but not conversely.

Proof: Clearly follows from definition.

Example 4.5.6 Let \((X, \tau), (Y, \sigma)\) and \(f \) be defined as in Example 4.5.3. Here \(f \) is an \(\hat{\eta}^* \)-quotient map but not a homeomorphism, since \(f \) is not injective.

Proposition 4.5.7 Let \(f: X \to Y \) be an open surjective \(\hat{\eta}^* \)-irresolute map and \(g: Y \to Z \) be an \(\hat{\eta}^* \)-quotient map. Then the composition \(g \circ f: X \to Z \) is an \(\hat{\eta}^* \)-quotient map.

Proof: Let \(V \) be any open set in \(Z \). Then \(g^{-1}(V) \) is an \(\hat{\eta}^* \)-open set, since \(g \) is an \(\hat{\eta}^* \)-quotient map. Since \(f \) is \(\hat{\eta}^* \)-irresolute, \(f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V) \) is an \(\hat{\eta}^* \)-open set in \(X \), which implies that \((g \circ f)^{-1}(V) \) is an \(\hat{\eta}^* \)-open set. This shows that \(g \circ f \) is \(\hat{\eta}^* \)-continuous. Also, assume that \((g \circ f)^{-1}(V) \) is open in \(X \) for \(V \subset Z \), that is, \(f^{-1}(g^{-1}(V)) \) is open in \(X \). Since \(f \) is open, \(f(f^{-1}(g^{-1}(V))) \) is open in \(Y \). It follows that \(g^{-1}(V) \) is open in \(Y \), because \(f \) is surjective. Since \(g \) is a \(\hat{\eta}^* \)-quotient map, \(V \) is an \(\hat{\eta}^* \)-open set. Thus \(g \circ f: X \to Z \) is an \(\hat{\eta}^* \)-quotient map.

Proposition 4.5.8 If \(h: X \to Y \) is an \(\hat{\eta}^* \)-quotient map and \(g: X \to Z \) is a continuous map where \(Z \) is a space that is constant on each set \(h^{-1} \{ \{y\} \} \), for each \(y \in Y \), then \(g \) induces an \(\hat{\eta}^* \)-continuous map \(f: Y \to Z \) such that \(f \circ h = g \).

Proof: Since \(g \) is constant on \(h^{-1} \{ \{y\} \} \), for each \(y \in Y \), the set \(g(h^{-1}(\{y\})) \) is an one point set in \(Z \). If we let \(f(y) \) to denote this point, then it is clear that \(f \) is well
defined and for each \(x \in X \), \(f(h(x)) = g(x) \). We claim that \(f \) is \(\hat{\eta}^* \)-continuous. For if we let \(V \) be any open set in \(Z \), then \(g^{-1}(V) \) is an open set as \(g \) is continuous. But \(g^{-1}(V) = h^{-1}(f^{-1}(V)) \) is open in \(X \). Since \(h \) is an \(\hat{\eta}^* \)-quotient map, \(f^{-1}(V) \) is an \(\hat{\eta}^* \)-open set in \(Y \).

Definition 4.5.9 A surjective map \(f: X \to Y \) is said to be a strongly \(\hat{\eta}^* \)-quotient map if \(f \) is \(\hat{\eta}^* \)-continuous and \(f^{-1}(V) \) is \(\hat{\eta}^* \)-open in \(X \) implies that \(V \) is \(\hat{\eta}^* \)-open in \(Y \).

Proposition 4.5.10 Every strongly \(\hat{\eta}^* \)-quotient map is an \(\hat{\eta}^* \)-quotient map.

Proof: Let \(f: X \to Y \) be a strongly \(\hat{\eta}^* \)-quotient map. Let \(f^{-1}(V) \) be open in \(X \). Then \(f^{-1}(V) \) is an \(\hat{\eta}^* \)-open in \(X \). Since \(f \) is a strongly \(\hat{\eta}^* \)-quotient map, \(V \) is \(\hat{\eta}^* \)-open in \(Y \). This shows that \(f \) is an \(\hat{\eta}^* \)-quotient map.

Remark 4.5.11 The converse of the above Proposition need not be true in general as shown in the following example.

Example 4.5.12 The map \(f: (X, \tau) \to (Y, \sigma) \) is defined as in Example 4.5.3 is an \(\hat{\eta}^* \)-quotient map but not a strongly \(\hat{\eta}^* \)-quotient map, since \(f^{-1}(V) = \{b, c, d\} \) is \(\hat{\eta}^* \)-open in \(X \) but \(V = \{b, c\} \) is not \(\hat{\eta}^* \)-open in \(Y \).

Definition 4.5.13 Let \(f: X \to Y \) be a surjective map. Then \(f \) is called a completely \(\hat{\eta}^* \)-quotient map if \(f \) is \(\hat{\eta}^* \)-irresolute and \(f^{-1}(U) \) is \(\hat{\eta}^* \)-open in \(X \) implies that \(U \) is open in \(Y \).

Theorem 4.5.14 Let \(f: X \to Y \) be a surjective strongly \(\hat{\eta}^* \)-open and \(\hat{\eta}^* \)-irresolute map and \(g: Y \to Z \) be a completely \(\hat{\eta}^* \)-quotient map. Then \(g \circ f \) is a completely \(\hat{\eta}^* \)-quotient map.

86
Proof: Since f and g are $\tilde{\eta}^*$-irresolute, $g \circ f$ is $\tilde{\eta}^*$-irresolute, by Proposition 3.3.6(a). Suppose that $(g \circ f)^{-1}(V)$ is an $\tilde{\eta}^*$-open set in X for $V \subseteq Z$, that is, $f^{-1}(g^{-1}(V))$ is an $\tilde{\eta}^*$-open set in X. Since f is surjective and strongly $\tilde{\eta}^*$-open, $f(f^{-1}(g^{-1}(V))) = g^{-1}(V)$ is $\tilde{\eta}^*$-open in Y. Also g is completely $\tilde{\eta}^*$-quotient implies that V is open in Z. Thus $g \circ f$ is a completely $\tilde{\eta}^*$-quotient map.

Proposition 4.5.15 Every completely $\tilde{\eta}^*$-quotient map is a strongly $\tilde{\eta}^*$-quotient map.

Proof: Let $f: X \to Y$ be a completely $\tilde{\eta}^*$-quotient map. By Proposition 3.3.3, f is $\tilde{\eta}^*$-irresolute implies that f is $\tilde{\eta}^*$-continuous. Hence the proof follows.

Remark 4.5.16 The converse of the above Proposition need not be true in general as shown in the following example.

Example 4.5.17 Let $X = \{a, b, c\} = Y$, $\tau = \{X, \phi, \{a\}, \{a, b\}, \{a, c\}\}$ and $\sigma = \{Y, \phi, \{a\}\}$. Here $\tilde{\eta}^*o(\tau) = \{ X, \phi, \{a\}, \{a, b\}, \{a, c\}\}$ and $\tilde{\eta}^*o(\sigma) = P(X) - \{b, c\}$. Define a map $f: (X, \tau) \to (Y, \sigma)$ by $f(a) = a$, $f(b) = c$ and $f(c) = b$. Clearly f is strongly $\tilde{\eta}^*$-quotient map. But f is not a completely $\tilde{\eta}^*$-quotient map, since $\{a, b\}$ is $\tilde{\eta}^*$-closed in (Y, σ). But $f^{-1}(\{a, b\}) = \{a, c\}$ is not $\tilde{\eta}^*$-closed in (X, τ), implies that f is not $\tilde{\eta}^*$-irresolute.

Theorem 4.5.18 Let $f: X \to Y$ be a surjective map and both X and Y be $\tilde{T}_{\tilde{\eta}^*}$-spaces. Then the following are equivalent:

(i) f is a completely $\tilde{\eta}^*$-quotient map;

(ii) f is a strongly $\tilde{\eta}^*$-quotient map;

(iii) f is a $\tilde{\eta}^*$-quotient map.

Proof:
(i) \Rightarrow (ii) : Follows by Proposition 4.5.15.

(ii) \Rightarrow (iii) : Follows by Proposition 4.5.10.

(iii) \Rightarrow (i) : Since Y is a T_{η^*} space, f is η^*-irresolute, by Proposition 3.3.7.

Suppose that $f^{-1}(V)$ is η^*-open in X. Since X is a T_{η^*} space, $f^{-1}(V)$ is open in X. By (iii), V is η^*-open in Y. Since Y is a T_{η^*} space, V is open in Y. Hence, we get (i).

4.6 η^*-regular and η^*-normal spaces

Munshi [34] introduced g-regular and g-normal spaces using g-closed sets in topological spaces. Noiri and Popa [40] have further investigated the result of Munshi. In this section some new spaces namely η^*-regular and η^*-normal spaces in topological spaces are introduced and some of their characterizations are obtained.

Definition 4.6.1 A space X is said to be η^*-regular if for every η^*-closed set F and each point $x \in F$, there exist disjoint semi-preopen sets U and V such that $F \subseteq U$ and $x \in V$.

Example 4.6.2 Let $X = \{a, b, c, d\}$ and $\tau = \{X, \phi, \{a\}, \{b\}, \{d\}, \{a, b\}, \{a, d\}, \{b, d\}, \{a, b, d\}\}$. Here $\eta^*c(\tau) = P(X) - \{a, b, d\}$. SPO($X$) = $P(X) - \{c\}$. Clearly X is η^*-regular.

Example 4.6.3 Let $X = \{a, b, c\}$ and $\tau = \{X, \phi, \{a\}\}$. Here $\eta^*c(\tau) = P(X) - \{a\}$. SPO($X$) = $\{X, \phi, \{a\}, \{a, b\}, \{a, c\}\}$. Clearly (X, τ) is not η^*-regular, since $b \not\in \{a, c\}$ and $\{a, c\}$ is an η^*-closed set, but there are no disjoint semi-preopen sets containing the point b and the set $\{a, c\}$.

88
Theorem 4.6.4
If X is an \mathcal{H}^*-regular space and Y is a clopen subset of X, then the subspace Y is \mathcal{H}^*-regular.

Proof: Let F be any \mathcal{H}^*-closed subset of Y and $y \in F^c$. By Theorem 2.2.28, F is \mathcal{H}^*-closed in X. Since X is \mathcal{H}^*-regular, there exist disjoint semi-preopen sets U and V of X such that $y \in U$ and $F \subseteq V$. By Lemma 1.1.16 and also Y is open hence α-open, we get $U \cap Y$ and $V \cap Y$ are disjoint semi-preopen sets of the subspace Y such that $y \in U \cap Y$ and $F \subseteq V \cap Y$. Hence, the subspace Y is \mathcal{H}^*-regular.

Theorem 4.6.5
Let X be a topological space. Then the following statements are equivalent:

(i). X is \mathcal{H}^*-regular.

(ii). For each point $x \in X$ and for each \mathcal{H}^*-open neighbourhood W of x (there exists an \mathcal{H}^*-open set G such that $x \in G \subseteq W$), there exists a semi-preopen set U of X such that $spcl(U) \subseteq W$.

(iii). For each point $x \in X$ and for each \mathcal{H}^*-closed set F not containing x, there exists a semi-preopen set V of x such that $spcl(V) \cap F = \emptyset$.

Proof:

(i) \Rightarrow (ii): Let W be any \mathcal{H}^*-open neighbourhood of x. Then there exists an \mathcal{H}^*-open set G such that $x \in G \subseteq W$. Since G^c is \mathcal{H}^*-closed and $x \in G^c$, by hypothesis there exist semi-preopen sets U and V such that $G^c \subseteq U$, $x \in V$ and $U \cap V = \emptyset$ and so $V \subseteq U^c$. By Lemma 1.1.5, $spcl(V) \subseteq spcl(U^c) = U^c$ and $G^c \subseteq U$ implies that $U^c \subseteq G \subseteq W$. Therefore, $spcl(V) \subseteq W$.

(ii) \Rightarrow (i): Let F be any \mathcal{H}^*-closed set and $x \in F$. Then $x \in F^c$ and F^c is \mathcal{H}^*-open and so F^c is an \mathcal{H}^*-neighbourhood of x. By hypothesis, there exists a semi-preopen set V of x such that $x \in V$ and $spcl(V) \subseteq F^c$, which implies that $F \subseteq (spcl(V))^c$.

89
Then $(\text{spcl}(V))^c$ is a semi-preopen set containing F and $V \cap (\text{spcl}(V))^c = \emptyset$. Therefore, X is $\hat{\eta}^*$-regular.

(ii) \Rightarrow (iii): Let $x \in X$ and F be an $\hat{\eta}^*$-closed set such that $x \notin F$. Then F^c is an $\hat{\eta}^*$-open neighbourhood of x and by hypothesis, there exists a semi-preopen set V of x such that $\text{spcl}(V) \subseteq F^c$ and hence $\text{spcl}(V) \cap F = \emptyset$.

(iii) \Rightarrow (ii): Let $x \in X$ and W be an $\hat{\eta}^*$-open neighbourhood of x. Then there exists an $\hat{\eta}^*$-open set G such that $x \in G \subseteq W$. Since G^c is $\hat{\eta}^*$-closed and $x \notin G^c$, by hypothesis there exists a semi-preopen set U of x such that $\text{spcl}(U) \cap G^c = \emptyset$. Therefore, $\text{spcl}(U) \subseteq G \subseteq W$.

Theorem 4.6.6 Assume that $\hat{\eta}^*\circ(\tau)$ is closed under any union. Then the following are equivalent:

(i) X is $\hat{\eta}^*$-regular;

(ii) $\text{spcl}_\theta(A) = \hat{\eta}^*\text{cl}(A)$ for every subset A of X;

(iii) $\text{spcl}_\theta(A) = A$ for every $\hat{\eta}^*$-closed set A.

Proof:

(i) \Rightarrow (ii): For any subset A of X, we always have $A \subseteq \hat{\eta}^*\text{cl}(A) \subseteq \text{spcl}_\theta(A)$.

Let $x \in (\hat{\eta}^*\text{cl}(A))^c$. Then there exists an $\hat{\eta}^*$-closed set F such that $x \in F^c$ and $A \subseteq F$. By assumption, there exist disjoint semi-preopen sets U and V such that $x \in U$ and $F \subseteq V$. Now $x \in U \subseteq \text{spcl}(U) \subseteq V^c \subseteq F^c \subseteq A^c$ and therefore $\text{spcl}(U) \cap A = \emptyset$. Thus $x \in (\text{spcl}_\theta(A))^c$ and hence $\text{spcl}_\theta(A) = \hat{\eta}^*\text{cl}(A)$.

(ii) \Rightarrow (iii): Clearly follows by (ii) and by Proposition 3.2.18.

(iii) \Rightarrow (i): Let F be any $\hat{\eta}^*$-closed set and $x \in F^c$. Since F is an $\hat{\eta}^*$-closed set, by assumption $x \in (\text{spcl}_\theta(F))^c$ and so there exists a semi-preopen set U such that $x \in U$ and $\text{spcl}(U) \cap F = \emptyset$. Then $F \subseteq (\text{spcl}(U))^c$. Let $V = (\text{spcl}(U))^c$. Then V is
semi-pre open such that $F \subseteq V$. Also the sets U and V are disjoint and hence X is $\hat{\eta}^*$-regular.

Theorem 4.6.7 If X is a $\hat{\eta}^*$-regular space and $f: X \to Y$ is bijective, ω^*-open, β-irresolute and pre β-open, then (Y, σ) is $\hat{\eta}^*$-regular.

Proof: Let F be an $\hat{\eta}^*$-closed subset of Y and $y \notin F$. By Theorem 3.3.8, the map f is $\hat{\eta}^*$-irresolute and hence $f^{-1}(F)$ is $\hat{\eta}^*$-closed in (X, τ). Since f is bijective, let $f(x) = y$, then $x \notin f^{-1}(F)$. By hypothesis, there exist disjoint semi-preopen sets U and V such that $x \in U$ and $f^{-1}(F) \subseteq V$. Since f is pre-β-open and bijective, we have $y \in f(U)$, $F \subseteq f(V)$ and $f(U) \cap f(V) = \emptyset$. This shows that the space Y is also $\hat{\eta}^*$-regular.

Theorem 4.6.8 If $f: X \to Y$ is ω-irresolute pre-β-closed β-irresolute injection and Y is $\hat{\eta}^*$-regular, then X is $\hat{\eta}^*$-regular.

Proof: Let F be any $\hat{\eta}^*$-closed set of X and $x \notin F$. By hypothesis, f is ω-irresolute and pre-β-closed, by Theorem 4.2.9, $f(F)$ is $\hat{\eta}^*$-closed in Y and $f(x) \notin f(F)$. Again Y is $\hat{\eta}^*$-regular and so there exist disjoint semi-preopen sets U and V in Y such that $f(x) \in U$ and $f(F) \subseteq V$. Since f is β-irresolute, $f^{-1}(U)$ and $f^{-1}(V) \in \text{SPO}(X)$ such that $x \in f^{-1}(U)$, $F \subseteq f^{-1}(V)$ and $f^{-1}(U) \cap f^{-1}(V) = \emptyset$. Therefore, X is $\hat{\eta}^*$-regular.

We conclude this section with the introduction of $\hat{\eta}^*$-normal space in topological spaces.

Definition 4.6.9 A topological space X is said to be $\hat{\eta}^*$-normal if for any pair of disjoint $\hat{\eta}^*$-closed sets A and B, there exist disjoint semi-preopen sets U and V such that $A \subseteq U$ and $B \subseteq V$.

91
Example 4.6.10 Let X be defined as in Example 4.6.2. Clearly X is $\tilde{\eta}^*$-normal. Also let X be defined as in Example 4.6.3. Here X is not $\tilde{\eta}^*$-normal, since there are no pair of disjoint semi-preopen sets containing disjoint $\tilde{\eta}^*$-closed sets $\{b\}$ and $\{c\}$.

Theorem 4.6.11 If X is a $\tilde{\eta}^*$-normal space and Y is a clopen subset of X, then the subspace Y is $\tilde{\eta}^*$-normal.

Proof: Let A and B be any disjoint $\tilde{\eta}^*$-closed sets of Y. By Theorem 2.2.28, A and B are $\tilde{\eta}^*$-closed in X. Since X is $\tilde{\eta}^*$-normal, there exist disjoint semi-preopen sets U and V of X such that $A \subseteq U$ and $B \subseteq V$. Since Y is open, Y is α-open. By Lemma 1.1.6, $U \cap Y$ and $V \cap Y$ are disjoint semi-preopen sets in Y and so the subspace Y is normal.

The next theorem is a characterization of $\tilde{\eta}^*$-normal space.

Theorem 4.6.12 Let X be a topological space. Then the following statements are equivalent:

(i). X is $\tilde{\eta}^*$-normal.

(ii). For each $\tilde{\eta}^*$-closed set F and for each $\tilde{\eta}^*$-open set U containing F, there exists a semi-preopen set V containing F such that $\text{spcl}(V) \subseteq U$.

(iii). For each pair of disjoint $\tilde{\eta}^*$-closed sets A and B in X, there exists a semi-preopen set U containing A such that $\text{spcl}(U) \cap B = \emptyset$.

(iv). For each pair of disjoint $\tilde{\eta}^*$-closed sets A and B in X, there exist semi-preopen sets U containing A and V containing B such that $\text{spcl}(U) \cap \text{spcl}(V) = \emptyset$.

Proof:
(i) ⇒ (ii): Let F be an \mathcal{H}^*-closed set and U be an \mathcal{H}^*-open set such that $F \subseteq U$. Then $F \cap U^c = \emptyset$. By assumption, there exist semi-preopen sets V and W such that $F \subseteq V$, $U^c \subseteq W$ and $V \cap W = \emptyset$, which implies that $\text{spc}(V) \cap W = \emptyset$.

Now, $\text{spc}(V) \cap U^c \subseteq \text{spc}(V) \cap W = \emptyset$ and so $\text{spc}(V) \subseteq U$.

(ii) ⇒ (iii): Let A and B be disjoint \mathcal{H}^*-closed sets of X. Since $A \cap B = \emptyset$, $A \subseteq B^c$ and B^c is \mathcal{H}^*-open. By assumption, there exists a semi-preopen set U containing A such that $\text{spc}(U) \subseteq B^c$ and so $\text{spc}(U) \cap B = \emptyset$.

(iii) ⇒ (iv): Let A and B be any two disjoint \mathcal{H}^*-closed sets of X. Then by assumption, there exists a semi-preopen set U containing A such that $\text{spc}(U) \cap B = \emptyset$. Since $\text{spc}(U)$ is semi-preclosed, it is \mathcal{H}^*-closed and so B and $\text{spc}(U)$ are disjoint \mathcal{H}^*-closed sets in X. Therefore again by assumption, there exists a semi-preopen set V containing B such that $\text{spc}(V) \cap \text{spc}(U) = \emptyset$.

(iv) ⇒ (i): Let A and B be any two disjoint \mathcal{H}^*-closed sets of X. By assumption, there exist semi-preopen sets U containing A and V containing B such that $\text{spc}(U) \cap \text{spc}(V) = \emptyset$, we have $U \cap V = \emptyset$ and thus X is \mathcal{H}^*-normal.

Theorem 4.6.13 If $f: X \to Y$ is a \mathcal{H}^*-irresolute bijective pre-β-open mapping and X is \mathcal{H}^*-normal, then Y is \mathcal{H}^*-normal.

Proof: Let A and B be any two disjoint \mathcal{H}^*-closed sets of Y. Since the map f is \mathcal{H}^*-irresolute, $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint \mathcal{H}^*-closed sets of X. Also X is \mathcal{H}^*-normal, there exist disjoint semi-preopen sets U and V such that $f^{-1}(A) \subseteq U$ and $f^{-1}(B) \subseteq V$. Since f is pre-β-open and bijective, $f(U)$ and $f(V)$ are semi-preopen in Y such that $A \subseteq f(U)$, $B \subseteq f(V)$ and $f(U) \cap f(V) = \emptyset$. Therefore, Y is \mathcal{H}^*-normal.

Theorem 4.6.14 If $f: X \to Y$ is ω-irresolute pre-β-closed β-irresolute injection and Y is \mathcal{H}^*-normal, then X is \mathcal{H}^*-normal.
Proof: Let A and B be any two disjoint \mathcal{Y}^*-closed subsets of X. Since f is ω-irresolute pre-β-closed, $f(A)$ and $f(B)$ are disjoint \mathcal{Y}^*-closed sets of Y by Theorem 4.2.9. Also Y is \mathcal{Y}^*-normal, there exist disjoint semi-preopen sets U and V such that $f(A) \subseteq U$ and $f(B) \subseteq V$. Thus $A \subseteq f^{-1}(U)$, $B \subseteq f^{-1}(V)$ and $f^{-1}(U) \cap f^{-1}(V) = \emptyset$. Since f is β-irresolute $f^{-1}(U)$ and $f^{-1}(V)$ are semi-preopen in X. Hence, X is \mathcal{Y}^*-normal.

Theorem 4.6.15 [39] A map $f: X \to Y$ is weakly β-irresolute if and only if $f^{-1}(V) \subseteq \text{spint}(f^{-1}(\text{spcl}(V))).$

Theorem 4.6.16 If $f: X \to Y$ is weakly β-irresolute \mathcal{Y}^*-closed injection and Y is \mathcal{Y}^*-normal, then X is sp-normal.

Proof: Let A and B be any two disjoint closed sets of X. Since f is injective and \mathcal{Y}^*-closed, $f(A)$ and $f(B)$ are disjoint \mathcal{Y}^*-closed sets of Y. Since Y is \mathcal{Y}^*-normal, by Theorem 4.6.12, there exist semi-preopen sets U and V such that $f(A) \subseteq U$, $f(B) \subseteq V$ and $\text{spcl}(U) \cap \text{spcl}(V) = \emptyset$. Since f is weakly β-irresolute, $A \subseteq f^{-1}(U) \subseteq \text{spint}(f^{-1}(\text{spcl}(U)))$, $B \subseteq f^{-1}(V) \subseteq \text{spint}(f^{-1}(\text{spcl}(V)))$, by Theorem 4.6.15. Thus $\text{spint}(f^{-1}(\text{spcl}(U))) \cap \text{spint}(f^{-1}(\text{spcl}(V))) = \emptyset$. Therefore, X is sp-normal.

$\star\star\star\star\star\star$