CHAPTER II

FUZZY AND ANTI-FUZZY IDEALS

2.1 Introduction:

In this chapter, the theory of fuzzy and anti-fuzzy ideals using homomorphism and anti-homomorphism are studied. Some properties of fuzzy and anti-fuzzy ideals are also discussed.

2.1.1 Definition:

Let \(R \) be a ring. A fuzzy subset \(A \) of \(R \) is called a fuzzy subring of \(R \) if the following conditions are satisfied:

(i) \(A(x - y) \geq \min \{ A(x), A(y) \} \),

(ii) \(A(xy) \geq \min \{ A(x), A(y) \} \), for all \(x, y \in R \).

2.1.1 Example:

Consider the ring \(R = (\mathbb{Z}_p, +_p, \times_p) \), where \(p \) is a prime number, \(\mathbb{Z}_p = \{ 0, 1, 2, ..., (p - 1) \} \) and \(+_p \) and \(\times_p \) denote "addition modulo \(p \)" and "multiplication modulo \(p \)" respectively. Define \(A : \mathbb{Z}_p \to [0, 1] \) by

\[
A(x) =
\begin{cases}
1, & \text{if } x \text{ is even} \\
0.5, & \text{if } x \text{ is odd}.
\end{cases}
\]

Then \(A \) is a fuzzy subring of \(\mathbb{Z}_p \).

2.1.2 Definition:

Let \(R \) be a ring. A fuzzy subring \(A \) of \(R \) is said to be a fuzzy normal subring of \(R \) if \(A(xy) = A(yx) \), for all \(x, y \in R \).
2.1.2 Example:

The set \mathbb{Z} of integers under ordinary addition and multiplication is a ring. Define $A : \mathbb{Z} \rightarrow [0, 1]$ by

$$A(x) = \begin{cases} 0.8, & \text{if } x \text{ is even} \\ 0.6, & \text{if } x \text{ is odd} \end{cases}.$$

Then A is a fuzzy normal subring of \mathbb{Z}.

2.1.3 Definition:

Let R be a ring. A fuzzy subset A of R is said to be a **fuzzy ideal** of R if the following conditions are satisfied:

(i) $A(x - y) \geq \min\{A(x), A(y)\},$

(ii) $A(xy) \geq \max\{A(x), A(y)\}$, for all $x, y \in R$.

2.1.3 Example:

Consider the fuzzy subset A of R defined by $A(x) = 0.8$, if $x \in \mathbb{Z}$ and $A(x) = 0.4$ otherwise. Then A is a **fuzzy ideal** of R.

2.1.4 Definition:

Let R be a ring. A fuzzy ideal A of R is said to be a **fuzzy normal ideal** of R if $A(xy) = A(yx)$, for all $x, y \in R$.
2.1.4 Example:

The set \mathbb{R} of real numbers under ordinary addition and multiplication is a ring.

Define $A: \mathbb{R} \to [0, 1]$ by

$$A(x) = \begin{cases} 0.7, & \text{if } x \text{ is even} \\ 0.3, & \text{if } x \text{ is odd.} \end{cases}$$

Then A is a fuzzy normal ideal of \mathbb{R}.

2.1.5 Definition:

Let \mathbb{R} be a ring. A fuzzy subset A of \mathbb{R} is called an anti-fuzzy subring of \mathbb{R} if the following conditions are satisfied:

(i) $A(x - y) \leq \max \{ A(x), A(y) \}$,

(ii) $A(xy) \leq \max \{ A(x), A(y) \}$, for all $x, y \in \mathbb{R}$.

2.1.6 Definition:

Let \mathbb{R} be a ring. An anti-fuzzy subring A of \mathbb{R} is said to be an anti-fuzzy normal subring of \mathbb{R} if $A(xy) = A(yx)$, for all $x, y \in \mathbb{R}$.

2.1.7 Definition:

Let \mathbb{R} be a ring. A fuzzy subset A of \mathbb{R} is called an anti-fuzzy ideal of \mathbb{R} if the following conditions are satisfied:

(i) $A(x - y) \leq \max \{ A(x), A(y) \}$,

(ii) $A(xy) \leq \min \{ A(x), A(y) \}$, for all $x, y \in \mathbb{R}$.
2.1.8 Definition:

Let R be a ring. An anti-fuzzy ideal A of R is said to be an anti-fuzzy normal ideal of R if $A(xy) = A(yx)$, for all x and $y \in R$.

2.1.9 Definition:

Let R and R' be any two rings. Let $f: R \rightarrow R'$ be any function and let A be a fuzzy ideal in R, V be a fuzzy ideal in $f(R) = R'$, defined by

$$V(y) = \sup_{x \in f^{-1}(y)} A(x),$$

for all $x \in R$ and $y \in R'$. A is called a pre-image of V under f and is denoted by $f^{-1}(V)$.

2.1.10 Definition:

Let R and R' be any two rings. Let $f: R \rightarrow R'$ be any function and let A be an anti-fuzzy ideal in R, V be an anti-fuzzy ideal in $f(R) = R'$, defined by

$$V(y) = \inf_{x \in f^{-1}(y)} A(x),$$

for all $x \in R$ and $y \in R'$. A is called a pre-image of V under f and is denoted by $f^{-1}(V)$.

2.1.11 Definition:

Let A be an anti-fuzzy ideal, the subset $x+A$ defined by

$$(x+A)(y) = A(y-x)$$

is called a coset of the anti-fuzzy ideal A.

2.1.12 Definition:

Let A be a fuzzy subset of X. For $t \in [0, 1]$, the lower level subset of A is the set

$$\bar{A}_t = \{ x \in X : A(x) \leq t \}.$$
2.1.13 Definition:

Let A be an anti-fuzzy ideal of a ring R. The ideal A_t, $t \in [0,1]$ and $t \geq A(0)$ is called the lower level ideal of A.

2.1.1 Theorem:

Let R and R' be any two rings with identity. Let $f : R \rightarrow R'$ be a homomorphism.

Then,

(i) $f(0) = 0'$, $f(1) = 1'$, where 0, 1 and $0'$, $1'$ are the identities of R and R' respectively.

(ii) $f(-a) = -f(a)$, for all $a \in R$.

Proof:

It is trivial.

2.1.2 Theorem:

Let R and R' be any two rings with identity. Let $f : R \rightarrow R'$ be an anti-homomorphism. Then

(i) $f(0) = 0'$, $f(1) = 1'$, where 0, 1 and $0'$, $1'$ are the identities of R and R' respectively, and

(ii) $f(-a) = -f(a)$, for all $a \in R$.

Proof:

Let $a \in R$. Then,

$f(a) = f(a + 0) = f(0) + f(a)$

and $f(a) = f(a \cdot 1) = f(1) \cdot f(a)$, as f is an anti-homomorphism.
As \(f(a) \in R^l \), then
\[
0^l + f(a) = f(a)
\]
and
\[
1^l \cdot f(a) = f(a)
\]
which implies that
\[
0^l + f(a) = f(0^l) + f(a)
\]
and
\[
1^l \cdot f(a) = f(1^l) \cdot f(a), \quad \text{by cancellation law}
\]
which implies that
\[
f(0^l) = 0^l \quad \text{and} \quad f(1^l) = 1^l.
\]
Thus (i) is proved.

Now,
\[
f(a) + f(-a) = f(-a + a)
\]
\[
= f(0) = 0^l.
\]
Hence
\[
f(-a) = -f(a), \quad \text{for all} \ a \in R.
\]
Thus (ii) is proved.

2.2 - FUZZY AND ANTI-FUZZY IDEALS OF A RING R UNDER HOMOMORPHISM AND ANTI-HOMOMORPHISM:

2.2.1 Theorem:

Let \(R \) and \(R^l \) be any two rings. The homomorphic image of a fuzzy ideal of \(R \) is a fuzzy ideal of \(R^l \).

Proof:

Let \(R \) and \(R^l \) be any two rings.

Let \(f: R \to R^l \) be a homomorphism.
That is \(f(x \pm y) = f(x) \pm f(y) \) and \(f(xy) = f(x)f(y) \), for all \(x \) and \(y \in \mathbb{R} \).

Let \(V = f(A) \), where \(A \) is a fuzzy ideal of \(\mathbb{R} \).

We have to prove that \(V \) is a fuzzy ideal of \(\mathbb{R}' \).

For \(f(x) \) and \(f(y) \in \mathbb{R}' \), we have

\[
V(f(x) - f(y)) = V(f(x - y)), \quad \text{as } f \text{ is a homomorphism}
\]

\[
\geq A(x - y),
\]

\[
\geq \min\{ A(x), A(y) \} \quad \text{as } A \text{ is a fuzzy ideal of } \mathbb{R},
\]

which implies that

\[
V(f(x) - f(y)) \geq \min\{ V(f(x)), V(f(y)) \}.
\]

And,

\[
V(f(x)f(y)) = V(f(xy)), \quad \text{as } f \text{ is a homomorphism}
\]

\[
\geq A(xy),
\]

\[
\geq \max\{ A(x), A(y) \}, \quad \text{as } A \text{ is a fuzzy ideal of } \mathbb{R},
\]

which implies that

\[
V(f(x)f(y)) \geq \max\{ V(f(x)), V(f(y)) \}.
\]

Hence \(V \) is a fuzzy ideal of a ring \(\mathbb{R}' \).

2.2.2 Theorem:

Let \(R \) and \(\mathbb{R}' \) be any two rings. The homomorphic pre-image of a fuzzy ideal of \(\mathbb{R}' \) is a fuzzy ideal of \(R \).

Proof:

Let \(R \) and \(\mathbb{R}' \) be any two rings.

Let \(f : R \to \mathbb{R}' \) be a homomorphism.

That is \(f(x \pm y) = f(x) \pm f(y) \) and \(f(xy) = f(x)f(y) \), for all \(x \) and \(y \in \mathbb{R} \).

Let \(V = f(A) \), where \(V \) is a fuzzy ideal of \(\mathbb{R}' \).

We have to prove that \(A \) is a fuzzy ideal of \(R \).
For \(x\) and \(y \in R\), we have
\[
A(x - y) = V(f(x - y)), \quad \text{since } A(x) = V(f(x))
\]
\[
= V(f(x) - f(y)), \quad \text{as } f \text{ is a homomorphism}
\]
\[
\geq \min\{V(f(x)), V(f(y))\}, \quad \text{as } V \text{ is a fuzzy ideal of } R'
\]
\[
= \min\{A(x), A(y)\},
\]
which implies that \(A(x - y) \geq \min\{A(x), A(y)\}\).

And,
\[
A(xy) = V(f(xy)), \quad \text{since } A(x) = V(f(x))
\]
\[
= V(f(x)f(y)), \quad \text{as } f \text{ is a homomorphism}
\]
\[
\geq \max\{V(f(x)), V(f(y))\}, \quad \text{as } V \text{ is a fuzzy ideal of } R'
\]
\[
= \max\{A(x), A(y)\},
\]
which implies that \(A(xy) \geq \max\{A(x), A(y)\}\).

Hence \(A\) is a fuzzy ideal of a ring \(R\).

2.2.3 Theorem:

Let \(R\) and \(R'\) be any two rings. The homomorphic image of an anti-fuzzy ideal of \(R\) is an anti-fuzzy ideal of \(R'\).

Proof:

Let \(R\) and \(R'\) be any two rings.

Let \(f : R \rightarrow R'\) be a homomorphism.

That is \(f(x + y) = f(x) + f(y)\) and \(f(xy) = f(x)f(y)\), for all \(x\) and \(y \in R\).

Let \(V = f(A)\), where \(A\) is an anti-fuzzy ideal of \(R\).

We have to prove that \(V\) is an anti-fuzzy ideal of \(R'\).

For \(f(x)\) and \(f(y) \in R'\), we have
\[V(f(x) - f(y)) = V(f(x - y)), \] as \(f \) is a homomorphism

\[\leq A(x - y), \]

\[\leq \max\{ A(x), A(y) \}, \] as \(A \) is an anti-fuzzy ideal of \(R \),

which implies that \(V(f(x) - f(y)) \leq \max\{ V(f(x)), V(f(y)) \} \).

And, \(V(f(x) f(y)) = V(f(xy)), \) as \(f \) is a homomorphism

\[\leq A(xy), \]

\[\leq \min\{ A(x), A(y) \}, \] as \(A \) is an anti-fuzzy ideal of \(R \),

which implies that \(V(f(x) f(y)) \leq \min\{ V(f(x)), V(f(y)) \} \).

Hence \(V \) is an anti-fuzzy ideal of a ring \(R' \).

2.2.4 Theorem:

Let \(R \) and \(R' \) be any two rings. The homomorphic pre-image of an anti-fuzzy ideal of \(R' \) is an anti-fuzzy ideal of \(R \).

Proof:

Let \(R \) and \(R' \) be any two rings.

Let \(f: R \to R' \) be a homomorphism.

That is \(f(x + y) = f(x) + f(y) \) and \(f(xy) = f(x)f(y) \), for all \(x, y \in R \).

Let \(V = f(A) \), where \(V \) is an anti-fuzzy ideal of \(R' \).

We have to prove that \(A \) is an anti-fuzzy ideal of \(R \).

For \(x \) and \(y \in R \), we have

\[A(x - y) = V(f(x - y)), \] since \(A(x) = V(f(x)) \)

\[= V(f(x) - f(y)), \] as \(f \) is a homomorphism

\[\leq \max\{ V(f(x)), V(f(x)) \}, \] as \(V \) is an anti-fuzzy ideal of \(R' \)

\[= \max\{ A(x), A(y) \}, \]
which implies that $A(x - y) \leq \max\{ A(x), A(y) \}$.

And, $A(xy) = V(f(xy))$, since $A(x) = V(f(x))$

\[= V(f(x)f(y)), \text{ as } f \text{ is a homomorphism} \]

\[\leq \min\{ V(f(x)), V(f(y)) \}, \text{ as } V \text{ is an anti-fuzzy ideal of } R' \]

\[= \min\{ A(x), A(y) \}, \]

which implies that $A(xy) \leq \min\{ A(x), A(y) \}$.

Hence A is an anti-fuzzy ideal of a ring R.

2.2.5 Theorem:

Let R and R' be any two rings. The anti-homomorphic image of a fuzzy ideal of R is a fuzzy ideal of R'.

Proof:

Let R and R' be any two rings.

Let $f: R \rightarrow R'$ be an anti-homomorphism.

That is $f(x + y) = f(y) + f(x)$ and $f(xy) = f(y)f(x)$, for all x and $y \in R$.

Let $V = f(A)$, where A is a fuzzy ideal of R.

We have to prove that V is a fuzzy ideal of R'.

For $f(x)$ and $f(y) \in R'$, we have

\[V(f(x) - f(y)) = V(f(y) - f(x)), \text{ as } f \text{ is an anti-homomorphism} \]

\[\geq A(y - x), \]

\[\geq \min\{ A(x), A(y) \}, \text{ as } A \text{ is a fuzzy ideal of } R, \]

which implies that $V(f(x) - f(y)) \geq \min\{ V(f(x)), V(f(y)) \}$.

24
And,
\[V(f(x)f(y)) = V(f(xy)) , \text{ as } f \text{ is an anti-homomorphism} \]
\[\geq A(yx), \]
\[\geq \max\{ A(x), A(y) \}, \text{ as } A \text{ is a fuzzy ideal of } R, \]
which implies that
\[V(f(x)f(y)) \geq \max\{ V(f(x)), V(f(y)) \}. \]
Hence \(V \) is a fuzzy ideal of a ring \(R' \).

2.2.6 Theorem :
Let \(R \) and \(R' \) be any two rings. The anti-homomorphic pre-image of a fuzzy ideal of \(R' \) is a fuzzy ideal of \(R \).

Proof:

Let \(R \) and \(R' \) be any two rings.
Let \(f : R \rightarrow R' \) be an anti-homomorphism.
That is \(f(x + y) = f(y) + f(x) \) and \(f(xy) = f(y)f(x) \), for all \(x \) and \(y \in R \).
Let \(V = f(A) \), where \(V \) is a fuzzy ideal of \(R' \).
We have to prove that \(A \) is a fuzzy ideal of \(R \).
Now, let \(x \) and \(y \in R \). Then,
\[A(x - y) = V(f(x - y)) , \text{ since } A(x) = V(f(x)) \]
\[= V(f(y) - f(x)) , \text{ as } f \text{ is an anti-homomorphism} \]
\[\geq \min\{ V(f(x)), V(f(y)) \} , \text{ as } V \text{ is a fuzzy ideal of } R' \]
\[= \min\{ A(x), A(y) \} , \]
which implies that
\[A(x - y) \geq \min\{ A(x), A(y) \} . \]
And,
\[A(xy) = V(f(xy)) , \text{ since } A(x) = V(f(x)) \]
\[= V(f(y)f(x)) , \text{ as } f \text{ is an anti-homomorphism} \]
\[\text{as } V \text{ is a fuzzy ideal of } R' \]
\[= \max \{ A(x), A(y) \}, \]
which implies that \[A(xy) \geq \max \{ A(x), A(y) \}. \]
Hence \(A \) is a fuzzy ideal of a ring \(R \).

\textbf{2.2.7 Theorem :}

Let \(R \) and \(R' \) be any two rings. The anti-homomorphic image of an anti-fuzzy ideal of \(R \) is an anti-fuzzy ideal of \(R' \).

\textbf{Proof :}

Let \(R \) and \(R' \) be any two rings.

Let \(f : R \to R' \) be an anti-homomorphism.

That is \(f(x + y) = f(y) \pm f(x) \) and \(f(xy) = f(y)f(x) \), for all \(x \) and \(y \in R \).

Let \(V = f(A) \), where \(A \) is an anti-fuzzy ideal of \(R \).

We have to prove that \(V \) is an anti-fuzzy ideal of \(R' \).

Now, let \(f(x) \) and \(f(y) \in R' \). Then,

\[V(f(x) - f(y)) = V(f(y - x)), \text{ as } f \text{ is an anti-homomorphism} \]
\[\leq A(y - x), \]
\[\leq \max \{ A(x), A(y) \}, \text{ as } A \text{ is an anti-fuzzy ideal of } R, \]
which implies that \(V(f(x) - f(y)) \leq \max \{ V(f(x)), V(f(y)) \} \).

And, \(V(f(x)f(y)) = V(f(yx)), \text{ as } f \text{ is an anti-homomorphism} \)
\[\leq A(yx), \]
\[\leq \min \{A(x), A(y) \}, \text{ as } A \text{ is an anti-fuzzy ideal of } R, \]
which implies that \(V(f(x)f(y)) \leq \min \{ V(f(x)), V(f(y)) \} \).

Hence \(V \) is an anti-fuzzy ideal of a ring \(R' \).
2.2.8 Theorem:

Let R and R' be any two rings. The anti-homomorphic pre-image of an anti-fuzzy ideal of R' is an anti-fuzzy ideal of R.

Proof:

Let R and R' be any two rings.

Let $f : R \rightarrow R'$ be an anti-homomorphism.

That is $f(x \pm y) = f(y) \pm f(x)$ and $f(xy) = f(y)f(x)$, for all x and $y \in R$.

Let $V = f(A)$, where V is an anti-fuzzy ideal of R'.

We have to prove that A is an anti-fuzzy ideal of R.

Now, let x and $y \in R$. Then,

$$A(x - y) = V(f(x - y)),$$

since $A(x) = V(f(x))$

$$= V(f(y) - f(x)),$$

as f is an anti-homomorphism

$$\leq \max\{ V(f(x)), V(f(y)) \},$$

as V is an anti-fuzzy ideal of R'

$$= \max\{ A(x), A(y) \},$$

which implies that $A(x - y) \leq \max\{ A(x), A(y) \}$.

And, $A(xy) = V(f(xy))$, since $A(x) = V(f(x))$

$$= V(f(y)f(x)),$$

as f is an anti-homomorphism

$$\leq \min\{ V(f(x)), V(f(y)) \},$$

as V is an anti-fuzzy ideal of R'

$$= \min\{ A(x), A(y) \},$$

which implies that $A(xy) \leq \min\{ A(x), A(y) \}$.

Hence A is an anti-fuzzy ideal of a ring R.

2.3 - FUZZY AND ANTI-FUZZY NORMAL IDEALS OF A RING R

UNDER HOMOMORPHISM AND ANTI-HOMOMORPHISM:

2.3.1 Theorem:

Let R and R' be any two rings. The homomorphic image of a fuzzy normal ideal of R is a fuzzy normal ideal of R'.

Proof:

Let R and R' be any two rings.

Let \(f : R \to R' \) be a homomorphism.

That is \(f(x + y) = f(x) + f(y) \) and \(f(xy) = f(x)f(y) \), for all \(x, y \in R \).

Let \(V = f(A) \), where \(A \) is a fuzzy normal ideal of R.

We have to prove that \(V \) is a fuzzy normal ideal of R'.

For \(f(x) \) and \(f(y) \in R' \), then clearly \(V \) is a fuzzy ideal,

since \(A \) is a fuzzy ideal.

Now, \(V(f(x)f(y)) = V(f(xy)) \), as \(f \) is a homomorphism

\[\geq A(xy), \]

\[= A(yx), \text{ as } A \text{ is a fuzzy normal ideal of } R. \]
\[V(f(yx)) = V(f(y)f(x)), \text{ as } f \text{ is a homomorphism,} \]

which implies that \[V(f(x)f(y)) = V(f(y)f(x)). \]

Hence \(V \) is a fuzzy normal ideal of a ring \(R' \).

2.3.2 Theorem:

Let \(R \) and \(R' \) be any two rings. The homomorphic pre-image of a fuzzy normal ideal of \(R' \) is a fuzzy normal ideal of \(R \).

Proof:

Let \(R \) and \(R' \) be any two rings.

Let \(f: R \to R' \) be a homomorphism.

That is \(f(x \pm y) = f(x) \pm f(y) \) and \(f(xy) = f(x)f(y) \), for all \(x, y \in R \).

Let \(V = f(A) \), where \(V \) is a fuzzy normal ideal of \(R' \).

We have to prove that \(A \) is a fuzzy normal ideal of \(R \).

Let \(x \) and \(y \in R \). Then clearly \(A \) is a fuzzy ideal,

since \(V \) is a fuzzy ideal.

Now, \(A(xy) = V(f(xy)) \), since \(A(x) = V(f(x)) \)

\[= V(f(x)f(y)), \text{ as } f \text{ is a homomorphism} \]
= \mathcal{V}(f(y)f(x)), \text{ as } \mathcal{V} \text{ is a fuzzy normal ideal of } R' \\
= \mathcal{V}(f(y)), \text{ as } f \text{ is a homomorphism} \\
= \mathcal{A}(yx), \text{ since } \mathcal{A}(x) = \mathcal{V}(f(x)),

which implies that \(\mathcal{A}(xy) = \mathcal{A}(yx) \).

Hence \(\mathcal{A} \) is a fuzzy normal ideal of a ring \(R \).

2.3.3 Theorem :

Let \(R \) and \(R' \) be any two rings. The homomorphic image of an anti-fuzzy normal ideal of \(R \) is an anti-fuzzy normal ideal of \(R' \).

Proof:

Let \(R \) and \(R' \) be any two rings.

Let \(f: R \to R' \) be a homomorphism.

That is \(f(x + y) = f(x) + f(y) \) and \(f(xy) = f(x)f(y) \), for all \(x, y \in R \).

Let \(\mathcal{V} = f(\mathcal{A}) \), where \(\mathcal{A} \) is an anti-fuzzy normal ideal of \(R \).

We have to prove that \(\mathcal{V} \) is an anti-fuzzy normal ideal of \(R' \).

Let \(f(x) \) and \(f(y) \in R' \). Then clearly \(\mathcal{V} \) is an anti-fuzzy ideal, since \(\mathcal{A} \) is an anti-fuzzy ideal.
Now, \(V(f(x)f(y)) = V(f(xy)) \), as \(f \) is a homomorphism

\[
\leq A(xy)
\]

\[= A(yx), \text{ as } A \text{ is an anti-fuzzy normal ideal of } R\]

\[\geq V(f(yx))
\]

\[= V(f(y)f(x)), \text{ as } f \text{ is a homomorphism,} \]

which implies that \(V(f(x)f(y)) = V(f(y)f(x)) \).

Hence \(V \) is an anti-fuzzy normal ideal of a ring \(R' \).

2.3.4 Theorem:

Let \(R \) and \(R' \) be any two rings. The homomorphic pre-image of an anti-fuzzy normal ideal of \(R' \) is an anti-fuzzy normal ideal of \(R \).

Proof:

Let \(R \) and \(R' \) be any two rings.

Let \(f : R \rightarrow R' \) be a homomorphism.

That is \(f(x \pm y) = f(x) \pm f(y) \) and \(f(xy) = f(x)f(y) \), for all \(x \) and \(y \in R \).

Let \(V = f(A) \), where \(V \) is an anti-fuzzy normal ideal of \(R' \).

We have to prove that \(A \) is an anti-fuzzy normal ideal of \(R \).

Let \(x \) and \(y \in R \). Then clearly \(A \) is an anti-fuzzy ideal,

since \(V \) is an anti-fuzzy ideal.
Now, \(A(xy) = V(f(xy)) \), since \(A(x) = V(f(x)) \)

\[= V(f(x)f(y)), \text{ as } f \text{ is a homomorphism} \]

\[= V(f(y)f(x)), \text{ as } V \text{ is an anti-fuzzy normal ideal of } R' \]

\[= V(f(yx)), \text{ as } f \text{ is a homomorphism} \]

\[= A(yx), \text{ since } A(x) = V(f(x)), \]

which implies that \(A(xy) = A(yx) \).

Hence \(A \) is an anti-fuzzy normal ideal of a ring \(R \).

2.3.5 Theorem:

Let \(R \) and \(R' \) be any two rings. The anti-homomorphic image of a fuzzy normal ideal of \(R \) is a fuzzy normal ideal of \(R' \).

Proof:

Let \(R \) and \(R' \) be any two rings.

Let \(f : R \to R' \) be an anti-homomorphism.

That is \(f(x + y) = f(y) + f(x) \) and \(f(xy) = f(y)f(x) \), for all \(x \) and \(y \in R \).

Let \(V = f(A) \), where \(A \) is a fuzzy normal ideal of \(R \).

We have to prove that \(V \) is a fuzzy normal ideal of \(R' \).

Let \(f(x), f(y) \in R' \). Then clearly \(V \) is a fuzzy ideal of \(R' \), since \(A \) is a fuzzy ideal of \(R \).
Now, \(V(f(x)f(y)) = V(f(yx)) \), as \(f \) is an anti-homomorphism
\[
\geq A(yx)
\]
\[
= A(xy), \quad \text{as } A \text{ is a fuzzy normal ideal of } R
\]
\[
\leq V(f(xy))
\]
\[
= V(f(y)f(x)), \quad \text{as } f \text{ is an anti-homomorphism},
\]
which implies that \(V(f(x)f(y)) = V(f(y)f(x)) \).

Hence \(V \) is a fuzzy normal ideal of a ring \(R' \).

2.3.6 Theorem:

Let \(R' \) and \(R' \) be any two rings. The anti-homomorphic pre-image of a fuzzy normal ideal of \(R' \) is a fuzzy normal ideal of \(R \).

Proof:

Let \(R \) and \(R' \) be any two rings.

Let \(f : R \rightarrow R' \) be an anti-homomorphism.

That is \(f(x + y) = f(y) + f(x) \) and \(f(xy) = f(y)f(x) \), for all \(x, y \in R \).

Let \(V = f(A) \), where \(V \) is a fuzzy normal ideal of \(R' \).

We have to prove that \(A \) is a fuzzy normal ideal of \(R \).

Let \(x, y \in R \). Then clearly \(A \) is a fuzzy ideal of \(R \),
since \(V \) is a fuzzy ideal of \(R' \).
Now, \(A(xy) = V(f(xy)) \), since \(A(x) = V(f(x)) \)
\[= V(f(y)f(x)), \text{ as } f \text{ is an anti-homomorphism} \]
\[= V(f(x)f(y)), \text{ as } V \text{ is a fuzzy normal ideal of } R' \]
\[= V(f(yx)), \text{ as } f \text{ is an anti-homomorphism} \]
\[= A(yx), \text{ since } A(x) = V(f(x)) \],
which implies that \(A(xy) = A(yx) \).

Hence \(A \) is a fuzzy normal ideal of a ring \(R \).

2.3.7 Theorem:

Let \(R \) and \(R' \) be any two rings. The anti-homomorphic image of an anti-fuzzy normal ideal of \(R \) is an anti-fuzzy normal ideal of \(R' \).

Proof:

Let \(R \) and \(R' \) be any two rings.

Let \(f : R \rightarrow R' \) be an anti-homomorphism.

That is \(f(x + y) = f(y) + f(x) \) and \(f(xy) = f(y)f(x) \), for all \(x, y \in R \).

Let \(V = f(A) \), where \(A \) is an anti-fuzzy normal ideal of \(R \).

We have to prove that \(V \) is an anti-fuzzy normal ideal of \(R' \).

Let \(f(x), f(y) \in R' \). Then clearly \(V \) is an anti-fuzzy ideal of \(R' \), since \(A \) is an anti-fuzzy ideal of \(R \).
Now,

\[V(f(x)f(y)) = V(f(yx)), \text{ as } f \text{ is an anti-homomorphism} \]

\[\leq A(xy) \]

\[= A(xy), \text{ as } A \text{ is an anti-fuzzy normal ideal of } R \]

\[\geq V(f(xy)) \]

\[= V(f(y)f(x)), \text{ as } f \text{ is an anti-homomorphism}, \]

which implies that \[V(f(x)f(y)) = V(f(y)f(x)). \]

Hence \(V \) is an anti-fuzzy normal ideal of a ring \(R' \).

2.3.8 Theorem:

Let \(R \) and \(R^1 \) be any two rings. The anti-homomorphic pre-image of an anti-fuzzy normal ideal of \(R^1 \) is an anti-fuzzy normal ideal of \(R \).

Proof:

Let \(R \) and \(R^1 \) be any two rings.

Let \(f : R \to R^1 \) be an anti-homomorphism.

That is \(f(x \pm y) = f(y) \pm f(x) \) and \(f(xy) = f(y)f(x) \), for all \(x, y \in R \).

Let \(V = f(A) \), where \(V \) is an anti-fuzzy normal ideal of \(R^1 \).

We have to prove that \(A \) is an anti-fuzzy normal ideal of \(R \).

Let \(x, y \in R \). Then clearly \(A \) is an anti-fuzzy ideal of \(R \), since \(V \) is an anti-fuzzy ideal of \(R^1 \).
Now, \(A(xy) = V(f(xy)), \) since \(A(x) = V(f(x)) \)

\[= V(f(y)f(x)), \text{ as } f \text{ is an anti-homomorphism} \]

\[= V(f(x)f(y)), \text{ as } V \text{ is an anti-fuzzy normal ideal of } R' \]

\[= V(f(yx)), \text{ as } f \text{ is an anti-homomorphism} \]

\[= A(yx), \text{ since } A(x) = V(f(x)), \]

which implies that \(A(xy) = A(yx). \)

Hence \(A \) is an anti-fuzzy normal ideal of a ring \(R. \)

\[\textbf{2.4 \quad PROPERTIES OF ANTI-FUZZY IDEALS :} \]

\[\textbf{2.4.1 Theorem :} \]

Let \(R \) be a ring. \(A \) is a fuzzy ideal of \(R \) iff \(A^c \) is an anti-fuzzy ideal of \(R. \)

\[\textbf{Proof :} \]

Suppose \(A \) is a fuzzy ideal of \(R. \)

For all \(x \) and \(y \in R, \) we have

\[A(x - y) \geq \min \{ A(x), A(y) \}, \]

implies that \(1 - A^c(x - y) \geq \min \{ 1 - A^c(x), 1 - A^c(y) \}, \)

implies that \(A^c(x - y) \leq 1 - \min \{ A^c(x), A^c(y) \}, \)

implies that \(A^c(x - y) \leq \max \{ A^c(x), A^c(y) \}. \)

Also, \(A(xy) \geq \max \{ A(x), A(y) \}, \)

implies that \(1 - A^c(xy) \geq \max \{ 1 - A^c(x), 1 - A^c(y) \}, \)
implies that $A'(xy) \leq 1 - \max\{1 - A'(x), 1 - A'(y)\}$,
implies that $A^c(xy) \leq \min\{A'(x), A'(y)\}$.
Thus A^c is an anti-fuzzy ideal of R.
Converse also can be proved similarly.

2.4.2 Theorem:

Let R be a ring. The union of any two anti-fuzzy ideals of R is always an anti-fuzzy ideal.

Proof:
Let R be a ring.
Let A and B be any two anti-fuzzy ideals of R.
Then for x and $y \in R$, we have

$$A(x - y) \leq \max\{A(x), A(y)\} \quad \text{and} \quad B(x - y) \leq \max\{B(x), B(y)\},$$
implies that $A(x - y) \leq A(x)$ or $A(x - y) \leq A(y),$$and$ B(x - y) \leq B(x)$ or $B(x - y) \leq B(y).$ Clearly $$(A \cup B)(x) = \max\{A(x), B(x)\}, \quad \text{and} \quad$$(A \cup B)(x - y) = \max\{A(x - y), B(x - y)\}.$$Now, $$(A \cup B)(x - y) \leq \max\{A(x), B(x)\}$$ or $$(A \cup B)(x - y) \leq \max\{A(y), B(y)\},$$implies that $(A \cup B)(x - y) \leq (A \cup B)(x)$ or $(A \cup B)(x - y) \leq (A \cup B)(y),$ implies that $(A \cup B)(x - y) \leq \max\{(A \cup B)(x), (A \cup B)(y)\}.$ And, $A(xy) \leq \min\{A(x), A(y)\}$ and $B(xy) \leq \min\{B(x), B(y)\}.$
That is \(A(xy) \leq A(x) \) and \(A(xy) \leq A(y) \) and
\[
B(xy) \leq B(x) \quad \text{and} \quad B(xy) \leq B(y).
\]
Clearly \((A \cup B)(x) = \max\{ A(x), B(x) \} \), and
\[
(A \cup B)(xy) = \max\{ A(xy), B(xy) \}.
\]
Now, \((A \cup B)(xy) \leq \max\{ A(x), B(x) \} \)
\[
\text{and} \quad (A \cup B)(xy) \leq \max\{ A(y), B(y) \},
\]
implies that \((A \cup B)(xy) \leq (A \cup B)(x) \)
\[
\text{and} \quad (A \cup B)(xy) \leq (A \cup B)(y),
\]
implies that \((A \cup B)(xy) \leq \min\{ (A \cup B)(x), (A \cup B)(y) \} \).
Hence \(A \cup B \) is an anti-fuzzy ideal of a ring \(R \).

2.4.3 Theorem:

Let \(R \) be a ring. The intersection of any two anti-fuzzy ideals of \(R \) is always an anti-fuzzy ideal.

Proof:

Let \(R \) be a ring.

Let \(A \) and \(B \) be any two anti-fuzzy ideals of \(R \).

Then for \(x \) and \(y \in R \). We have
\[
A(x - y) \leq \max\{ A(x), A(y) \}
\]
\[
\text{and} \quad B(x - y) \leq \max\{ B(x), B(y) \}.
\]
That is \(A(x - y) \leq A(x) \) or \(A(x - y) \leq A(y) \)
\[
\text{and} \quad B(x - y) \leq B(x) \) or \(B(x - y) \leq B(y).
\]
Clearly \((A \cap B)(x) = \min\{ A(x), B(x) \} \), and
\[
(A \cap B)(x - y) = \min\{ A(x - y), B(x - y) \}.
\]
38
Now, \((A \cap B)(x - y) \leq \min\{ A(x), B(x) \}\)

or \((A \cap B)(x - y) \leq \min\{ A(y), B(y) \}\),

implies that \((A \cap B)(x - y) \leq (A \cap B)(x)\)

or \((A \cap B)(x - y) \leq (A \cap B)(y)\),

implies that \((A \cap B)(x - y) \leq \max\{ (A \cap B)(x), (A \cap B)(y) \}\).

And, \(A(xy) \leq \min\{ A(x), A(y) \}\)

and \(B(xy) \leq \min\{ B(x), B(y) \}\),

implies that \(A(xy) \leq A(x)\) and \(A(xy) \leq A(y)\)

and \(B(xy) \leq B(x)\) and \(B(xy) \leq B(y)\).

Clearly \((A \cap B)(x) = \min\{ A(x), B(x) \}\), and

\((A \cap B)(xy) = \min\{ A(xy), B(xy) \}\).

Now, \((A \cap B)(xy) \leq \min\{ A(x), B(x) \}\)

and \((A \cap B)(xy) \leq \min\{ A(y), B(y) \}\),

implies that \((A \cap B)(xy) \leq (A \cap B)(x)\)

and \((A \cap B)(xy) \leq (A \cap B)(y)\),

implies that \((A \cap B)(xy) \leq \min\{ (A \cap B)(x), (A \cap B)(y) \}\).

Hence \(A \cap B\) is an anti-fuzzy ideal of a ring \(R\).

2.4.4 Theorem:

Let \(R\) be a ring. The union of a family of anti-fuzzy ideals of \(R\) is an anti-fuzzy ideal.

Proof:

Let \(\{A_i\}_{i \in I}\) be a family of anti-fuzzy ideals and let \(A = \bigcup_{i \in I} A_i\).
Then for x and $y \in R$, we have

$$A(x - y) = \sup_{i \in I} A_i(x - y)$$

$$\leq \sup_{i \in I} \max\{ A_i(x), A_i(y) \}$$

$$\leq \max\{ \sup_{i \in I} A_i(x), \sup_{i \in I} A_i(y) \}$$

$$= \max\{ A(x), A(y) \},$$

which implies that $A(x - y) \leq \max\{ A(x), A(y) \}$.

And,

$$A(xy) = \sup_{i \in I} A_i(xy)$$

$$\leq \sup_{i \in I} \min\{ A_i(x), A_i(y) \}$$

$$\leq \min\{ \sup_{i \in I} A_i(x), \sup_{i \in I} A_i(y) \}$$

$$= \min\{ A(x), A(y) \},$$

which implies that $A(xy) \leq \min\{ A(x), A(y) \}$.

Hence A is an anti-fuzzy ideal of a ring R.

2.4.5 Theorem:

Let R be a ring. The intersection of a family of anti-fuzzy ideals of R is an anti-fuzzy ideal.

Proof:

Let $\{A_i\}_{i \in I}$ be a family of anti-fuzzy ideals and let $A = \bigcap_{i \in I} A_i$.

Then for x and $y \in R$, we have

$$A(x - y) = \inf_{i \in I} A_i(x - y)$$
\[\leq \inf_{i \in I} \max\{ A_i(x), A_i(y) \} \]
\[\leq \max\{ \inf_{i \in I} A_i(x), \inf_{i \in I} A_i(y) \} \]
\[= \max\{ A(x), A(y) \}, \]

which implies that \(A(x - y) \leq \max\{ A(x), A(y) \} \).

And,
\[A(xy) = \inf_{i \in I} A_i(xy) \]
\[\leq \inf_{i \in I} \min\{ A_i(x), A_i(y) \} \]
\[\leq \min\{ \inf_{i \in I} A_i(x), \inf_{i \in I} A_i(y) \} \]
\[= \min\{ A(x), A(y) \}, \]

which implies that \(A(xy) \leq \min\{ A(x), A(y) \} \).

Hence \(A \) is an anti-fuzzy ideal of a ring \(R \).

2.4.6 Theorem:

Let \(R \) be a ring. If \(A \) is an anti-fuzzy ideal of \(R \), then \(x + A = y + A \iff A(x - y) = A(0) \). In that case \(A(x) = A(y) \).

Proof:

Given \(A \) is an anti-fuzzy ideal of \(R \).

That is \(A(x - y) \leq \max\{ A(x), A(y) \} \) and \(A(xy) \leq \min\{ A(x), A(y) \} \).

Suppose that \(x + A = y + A \), implies that \((x + A)(x) = (y + A)(x) \), implies that \(A(x - x) = A(x - y) \), implies that \(A(0) = A(x - y) \).
Conversely, assume that \(A(x - y) = A(0) \), then
\[
(x + A)(z) = A(z - x)
\]
\[
= A(z - x + y - y)
\]
\[
\leq \max\{ A(z - y), A(0) \}
\]
\[
= A(z - y)
\]
\[
= (y + A)(z),
\]
which implies that \((x + A)(z) \leq (y + A)(z) \). \(\text{--------------------------(1)} \)

Now,
\[
(y + A)(z) = A(z - y)
\]
\[
= A(z - y + x - x)
\]
\[
\leq \max\{ A(z - x), A(0) \}
\]
\[
= A(z - x), \quad \text{Since } A(0) \leq A(z - x)
\]
\[
= (x + A)(z),
\]
which implies that \((y + A)(z) \leq (x + A)(z) \). \(\text{--------------------------(2)} \)

From (1) and (2) we get, \(x + A = y + A \).

2.4.7 Theorem:

Let \(R \) be a ring. Let \(A \) be an anti-fuzzy ideal and \(x, y, u, \) and \(v \) be any elements in \(R \), if \(x + A = u + A \) and \(y + A = v + A \), then

(i) \((x + y) + A = (u + v) + A \)

(ii) \((xy) + A = (uv) + A. \)

Proof:

Given \(A \) is an anti-fuzzy ideal of \(R \).

That is \(A(x - y) \leq \max\{ A(x), A(y) \} \) and \(A(xy) \leq \min\{ A(x), A(y) \} \).
By Theorem 2.4.6,

\[A(x - u) = A(y - v) = A(0). \]

We get, \(A(x + y - u - v) = A(x - u + y - v) \leq \max\{ A(x - u), A(y - v)\} = A(0). \)

Again, by Theorem 2.4.6,

\[(x + y) + A = (u + v) + A. \]

Thus (i) is proved.

Now, \(A(uv - xy) = A(uv - uy + uy - xy) \leq \max\{ A(uv - uy), A(uy - xy)\} \]

\[= \max\{ A(u(v - y)), A((u - x)y)\} \]

\[= \max\{ \min[A(u), A(y - y)], \min[A(u - x), A(y)]\} \]

\[= \max\{ \min[A(u), A(0)], \min[A(0), A(y)]\} \]

\[= A(0), \]

which implies that \(A(uv - xy) = A(0). \)

By Theorem 2.4.6,

\[xy + A = uv + A. \]

Thus (ii) is proved.

2.4.8 Theorem:

If \(A \) is any anti-fuzzy ideal of a ring \(R \) and \(A(x) < A(y) \), for some \(x \) and \(y \) in \(R \), then \(A(x - y) = A(y) = A(y - x) \).

Proof:

If \(A \) is an anti-fuzzy ideal of \(R \) and \(A(x) < A(y) \).

That is \(A(x - y) \leq \max\{ A(x), A(y)\} \).
Now, \(A(x - y) \leq \max\{ A(x), A(y) \} = A(y) \).

Therefore, \(A(x - y) \leq A(y) \) \(\ldots \)(1).

Now, \(A(y) = A(x - (x - y)) \leq \max\{ A(x), A(x - y) \} \)

\[= A(x - y). \]

Therefore, \(A(y) \leq A(x - y) \) \(\ldots \)(2).

From (1) and (2), we get \(A(x - y) = A(y) \).

And, \(A(y - x) \leq \max\{ A(y), A(x) \} = A(y) \).

Therefore, \(A(y - x) \leq A(y) \) \(\ldots \)(3).

Now, \(A(y) = A(y - x + x) \)

\[\leq \max\{ A(y - x), A(x) \} \]

\[= A(y - x). \]

Therefore, \(A(y) \leq A(y - x) \) \(\ldots \)(4).

From (3) and (4), we get \(A(y) = A(y - x) \).

Hence \(A(x - y) = A(y) = A(y - x) \).

2.4.9 Theorem:

Let \(A \) be an anti-fuzzy ideal of a ring \(R \). Then for \(t \in [0, 1] \) such that

\[t \geq A(0), \quad \tilde{A}_t \text{ is an ideal of } R. \]

Proof:

For \(x \) and \(y \) in \(\tilde{A}_t \), we have

\[A(x) \leq t \text{ and } A(y) \leq t. \]

Now, \(A(x - y) \leq \max\{ A(x), A(y) \} \)

\[\leq \max\{ t, t \} = t, \]

which implies that \(A(x - y) \leq t. \)
Hence \(x - y \in \tilde{A}_t \).

Now, \(\tilde{A}(xy) \leq \min\{ \tilde{A}(x), \tilde{A}(y) \} \)
\[\leq \min\{ t, t \} = t, \]
which implies that \(\tilde{A}(xy) \leq t \).

Hence \(xy \in \tilde{A}_t \).

Hence \(\tilde{A}_t \) is an ideal of \(R \).

2.4.10 Theorem:

Let \(A \) be an anti-fuzzy ideal of a ring \(R \). If two lower level ideals \(\tilde{A}_{t_1}, \tilde{A}_{t_2} \subseteq [0, 1] \) and \(t_1, t_2 \geq A(0) \) with \(t_1 < t_2 \) of \(A \) are equal, then there is no \(x \) in \(R \) such that \(t_1 < A(x) < t_2 \).

Proof:

Let \(\tilde{A}_{t_1} = \tilde{A}_{t_2} \).

Suppose that there exists \(x \in R \) such that \(t_1 < A(x) < t_2 \).

Then \(\tilde{A}_{t_1} \subseteq \tilde{A}_{t_2} \).

That is \(x \in \tilde{A}_{t_1} \) does not imply that \(x \) in \(\tilde{A}_{t_2} \).

which is a contradiction to the fact that \(\tilde{A}_{t_1} = \tilde{A}_{t_2} \).

Therefore, there is no \(x \) in \(R \) such that \(t_1 < A(x) < t_2 \).

2.4.11 Theorem:

Let \(R \) be a ring. If \(A \) be a fuzzy subset of \(R \) such that \(\tilde{A}_t \) is an ideal of \(R \), for \(t \in [0, 1] \) and \(t \geq A(0) \), then \(A \) is an anti-fuzzy ideal of \(R \).
Proof:

Let \(x \) and \(y \in R \), \(A(x) = t_1 \) and \(A(y) = t_2 \).

Suppose that \(t_1 < t_2 \), then \(x \) and \(y \in \overline{A}_{t_1} \).

As \(\overline{A}_{t_1} \) is a subideal of \(R \),

\[x - y \in \overline{A}_{t_1} \quad \text{and} \quad ax, xa \in \overline{A}_{t_1}. \]

Now, \(A(x - y) \leq t_2 = \max\{ t_1, t_2 \} \)

\[\leq \max\{ A(x), A(y) \}, \]

which implies that \(A(x - y) \leq \max\{ A(x), A(y) \} \).

Now, \(A(ax) \leq t_2 = \max\{ t_3, t_2 \} \)

\[\leq \max\{ A(a), A(x) \}, \]

which implies that \(A(ax) \leq A(x) \), since \(A(a) = t_3 < t_2 \).

And, \(A(xa) \leq t_2 \)

\[= \max\{ t_2, t_3 \} \]

\[\leq \max\{ A(x), A(a) \}, \]

which implies that \(A(xa) \leq A(x) \), since \(A(a) = t_3 < t_2 \).

Hence \(A \) is an anti-fuzzy ideal of a ring \(R \).