LIST OF ABBREVIATIONS

\(g \): Acceleration due to gravity, \(\text{m/s}^2 \)

\(T_a \): Ambient air temperature, \(^\circ \text{C} \)

\(A_c \): Collector area, \(\text{m}^2 \)

\(h_w \): Convective heat transfer coefficient from the basin liner to water or vice versa, \(\text{W/m}^2{}^\circ \text{C} \)

\(h_{th} \): Convective heat transfer coefficient from the bottom of insulation to ambient, \(\text{W/m}^2{}^\circ \text{C} \)

\(h \): Convective heat transfer coefficient, \(\text{W/m}^2{}^\circ \text{C} \)

\(F_R \): Collector overall heat removal efficiency factor (dimensionless)

\(I_c \): Critical radiation level (MJ/m\(^2\))

\(H_d \): Daily diffuse radiation on a horizontal surface (MJ/m\(^2\))

\(m_w \): Distillate output, Kg/m\(^2\)/s

\(n \): Day of the year

\(T_g \): Glass cover temperature, \(^\circ \text{C} \)

\(I \): Hourly global solar radiation incident on a horizontal surface (MJ/m\(^2\))

\(I_d \): Hourly diffuse radiation incident on a horizontal surface (MJ/m\(^2\))

\(I_T \): Hourly total solar radiation incident on a tilted surface (MJ/m\(^2\))

\(\phi \): Latitude of the location

\(m \): Mass flow rate of water, Kg/s

\(M_a \): Mass of the air molecules, Kg/m\(^2\)

\(M_w \): Mass of the vapor (water) molecules, Kg

\(S_g \): Monthly average daily hours of bright sunshine hours (h)

\(S_o \): Monthly average day length (h)
\(T_{\text{max}} \): Maximum Ambient air temperature

\(T_{\text{min}} \): Minimum Ambient air temperature

\(X_c \): Monthly average critical radiation ratio given by

Equation (6.3) (dimensionless)

\(\overline{H_d} \): Monthly average daily diffuse radiation on a horizontal surface (MJ/m\(^2\))

\(\overline{HT} \): Monthly average daily global radiation on a tilted surface (MJ/m\(^2\))

\(H_g \): Monthly average daily global radiation (MJ m\(^2\)d\(^{-1}\))

\(H_o \): Monthly average daily extraterrestrial radiation (MJ m\(^2\)d\(^{-1}\))

\(Nu \): Nusselt Number

\(n \): Number of hours

\(N \): Number of days

\(n_o \): Number of data

\(U_k \): Overall heat transfer of a still, W/m\(^2\)\(\degree\)C

\(h_{rb} \): Radiative heat transfer coefficient from the bottom of insulation to ambient, W/m\(^2\)\(\degree\)C

\(q \): Rate of heat transferred, W/m\(^2\)

\(\overline{R} \): Ratio of monthly average daily global radiation on a tilted surface to that on a horizontal surface (dimensionless)

\(\overline{R_b} \): Ratio of monthly average daily beam radiation on a tilted surface to that on a horizontal surface (dimensionless)

\(\overline{k} \): Ratio of the monthly average daily global radiation on a horizontal surface to the monthly average daily extraterrestrial radiation on horizontal surface (dimensionless)
a, b and c : Regression coefficients
\(R_b \) : Ratio of daily beam radiation on a tilted surface to that on a horizontal surface (dimensionless)
\(R_{b,n} \) : Ratio of beam radiation on a tilted surface to that on a horizontal surface at noon (dimensionless)
\(r_{d,n} \) : Ratio of diffuse radiation at noon to the daily diffuse radiation (dimensionless)
\(R_n \) : Ratio of radiation on a tilted surface to that on a horizontal surface at noon (dimensionless)
\(r_{t,n} \) : Ratio of radiation at noon to the daily total radiation (dimensionless)
\(I_{sc} \) : Solar constant
\(\delta \) : Solar declination
\(\omega_s \) : Sunshine Hour angle
\(P_g \) : Saturated partial vapor pressure at glass surface, N/m\(^2\)
\(P_w \) : Saturated partial vapor pressure at water surface, N/m\(^2\)
\(A_{ss} \) : Sides area of solar still, m\(^2\)
\(T_{sky} \) : Sky temperature, °C
\(I(t) \) : Solar intensity, W/m\(^2\)
\(A_s \) : Solar still basin area, m\(^2\)
\(d_f \) : Spacing between water and glass cover, m
\(C_{pa} \) : Specific heat of air at constant pressure, J/Kg°C
\(C_w \) : Specific heat of water, J/Kg°C
\(T \) : Temperature, °C
\(k_i \) : Thermal conductivity of insulation, W/m°C
\(L_i \) : Thickness of insulation
\(T_w \) : Water temperature, °C
\(V \) : Wind velocity, m/s
Greek

β^1 : Coefficient of volumetric thermal expansion, $^\circ$C$^{-1}$

ρ_f : Density of vapor, Kg/m2

e$_g$: Emmisivity of glass cover

e$_w$: Emmisivity of water surface

ρ : Ground reflectance assumed to be 0.2

$\tau\alpha$: Monthly average transmittance-absorptance product (dimensionless)

ω_s : Sunset hour angle on a horizontal surface (degrees)

ω_s' : Sunset hour angle on a tilted surface (degrees)

$\bar{\phi}$: Monthly average daily utilizability (dimensionless)

$\bar{\phi}d$: Monthly average daily utilizability using data expression (6.2) (dimensionless)

$\bar{\phi}k$: Monthly average daily utilizability using Klein’s expression (6.1) (dimensionless)

β : Slope of the collector plane with respect to the horizontal (degrees)

σ : Stefan –Boltzman constant (5.66×10^{-8} W/m2K4)

η : Thermal efficiency of the system (percentage)

μ_f : Viscosity of vapor, N.S/m2