LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Principle of cotton dyeing with a triazyl reactive dye</td>
<td>10</td>
</tr>
<tr>
<td>1.2</td>
<td>Example of an Azo dye structure (Acid blue 113)</td>
<td>16</td>
</tr>
<tr>
<td>3.1</td>
<td>Hypnea valentiae (Red Macro algae)</td>
<td>90</td>
</tr>
<tr>
<td>3.2</td>
<td>Ulva fasciata in intertidal rocks</td>
<td>92</td>
</tr>
<tr>
<td>3.3</td>
<td>Ulva fasciata (after partially dried)</td>
<td>92</td>
</tr>
<tr>
<td>3.4</td>
<td>Experimental set-up of up-flow packed bed column</td>
<td>101</td>
</tr>
<tr>
<td>4.1</td>
<td>Biosorption of azo dyes by Hypnea and Ulva</td>
<td>117</td>
</tr>
<tr>
<td>4.2</td>
<td>Effect of pH on azo dyes by Hypnea and Ulva</td>
<td>119</td>
</tr>
<tr>
<td>4.3</td>
<td>Effect of Temperature on AR 66 by Hypnea and Ulva</td>
<td>120</td>
</tr>
<tr>
<td>4.4</td>
<td>Effect of agitation on azo dyes by Hypnea and Ulva</td>
<td>121</td>
</tr>
<tr>
<td>4.5</td>
<td>Langmuir adsorption isotherm for azo dyes by Hypnea and Ulva</td>
<td>123</td>
</tr>
<tr>
<td>4.6</td>
<td>Freundlich adsorption isotherm for azo dyes by Hypnea and Ulva</td>
<td>126</td>
</tr>
<tr>
<td>4.7</td>
<td>Biosorption of azo dyes by Hypnea and Ulva</td>
<td>128</td>
</tr>
<tr>
<td>4.8</td>
<td>Effect of initial dye concentrations on biosorption potential of Hypnea</td>
<td>130</td>
</tr>
<tr>
<td>4.9</td>
<td>Bio-kinetics of dye house effluent by Hypnea and Ulva</td>
<td>132</td>
</tr>
<tr>
<td>4.10</td>
<td>Breakthrough curves for AR66 biosorption on Hypnea biomass at different bed heights (flow rate = 5 mL/min, initial AG3 conc. = 100 mg/L, pH 3.0)</td>
<td>133</td>
</tr>
<tr>
<td>4.11</td>
<td>BDST model plot for AR66 biosorption onto Hypnea</td>
<td>135</td>
</tr>
<tr>
<td>4.12</td>
<td>Breakthrough curves for AR66 biosorption onto Hypnea biomass at different flow rates (bed height = 25 cm, initial AR66 conc. = 100 mg/L, pH 3.0)</td>
<td>135</td>
</tr>
<tr>
<td>FIGURE NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>4.13</td>
<td>Breakthrough curves for AR66 biosorption onto Hypnea biomass at different dye concentrations (bed height = 25 cm, flow rate = 5 mL/min, pH 3.0)</td>
<td>136</td>
</tr>
<tr>
<td>4.14</td>
<td>Effect of different carbon sources for the growth of Trametes sp. and Phanerochaete sp</td>
<td>141</td>
</tr>
<tr>
<td>4.15</td>
<td>Effect of different nitrogen sources for the growth of Trametes sp. and Phanerochaete sp</td>
<td>141</td>
</tr>
<tr>
<td>4.16</td>
<td>Effect of different pH for the growth of Trametes sp. and Phanerochaete sp</td>
<td>142</td>
</tr>
<tr>
<td>4.17</td>
<td>Effect of different temperature for growth of Trametes and Phanerochaete sp</td>
<td>143</td>
</tr>
<tr>
<td>4.18</td>
<td>Effect of different agitation for the growth of Trametes and Phanerochaete sp</td>
<td>144</td>
</tr>
<tr>
<td>4.19 (a)</td>
<td>Influence of co-substrates for the decolorization of azo dyes by Phanerochaete sp.</td>
<td>145</td>
</tr>
<tr>
<td>4.19 (b)</td>
<td>Influence of co-substrates for the decolorization of azo dyes by Trametes sp.</td>
<td>146</td>
</tr>
<tr>
<td>4.20 (a)</td>
<td>Effect of co-substrates concentration for decolorization of azo dyes by Phanerochaete sp.</td>
<td>147</td>
</tr>
<tr>
<td>4.20 (b)</td>
<td>Effect of co-substrates concentration for decolorization of azo dyes by Trametes sp.</td>
<td>147</td>
</tr>
<tr>
<td>4.21 (a)</td>
<td>Effect of inoculums concentration for decolorization of azo dyes by Phanerochaete sp</td>
<td>148</td>
</tr>
<tr>
<td>4.21 (b)</td>
<td>Effect of inoculums concentration for decolorization of azo dyes by Trametes sp.</td>
<td>148</td>
</tr>
<tr>
<td>4.22 (a)</td>
<td>Effect of pH for decolorization of azo dyes by Phanerochaete sp</td>
<td>149</td>
</tr>
<tr>
<td>4.22 (b)</td>
<td>Effect of pH for decolorization of azo dyes by Trametes sp.</td>
<td>150</td>
</tr>
<tr>
<td>4.23 (a)</td>
<td>Effect of temperature on decolorization of azo dyes by Phanerochaete sp</td>
<td>150</td>
</tr>
<tr>
<td>4.23 (b)</td>
<td>Effect of temperature on decolorization of azo dyes by Trametes sp.</td>
<td>151</td>
</tr>
<tr>
<td>4.24 (a)</td>
<td>Effects of agitation on decolorization of azo dyes by Phanerochaete sp</td>
<td>151</td>
</tr>
<tr>
<td>4.24 (b)</td>
<td>Effects of agitation on decolorization of azo dyes by Trametes sp</td>
<td>152</td>
</tr>
<tr>
<td>4.25 (a)</td>
<td>Decolorization of azo dyes (100 ppm) by Phanerochaete sp</td>
<td>154</td>
</tr>
<tr>
<td>FIGURE NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>4.25 (b)</td>
<td>Decolorization of azo dyes (100 ppm) by Trametes sp.</td>
<td>154</td>
</tr>
<tr>
<td>4.26</td>
<td>Decolorization of dye house effluent by Phanerochaete and Trametes sp</td>
<td>155</td>
</tr>
<tr>
<td>4.27 (a)</td>
<td>Effect of carbon and nitrogen sources on biodegradation of dye by Phanerochaete sp. [Dye]₀=10 ppm; pH = 6.5; Mass of WCIB = 0.3g</td>
<td>157</td>
</tr>
<tr>
<td>4.27 (b)</td>
<td>Effect of carbon and nitrogen sources on biodegradation of dye by Phanerochaete sp. [Dye]₀=10 ppm; pH = 6.5; Mass of WCIB = 1 g</td>
<td>157</td>
</tr>
<tr>
<td>4.28</td>
<td>Effect of static condition on biodecolorization [Dye]₀=10 ppm; pH=6.5</td>
<td>158</td>
</tr>
<tr>
<td>4.29</td>
<td>Effect of agitation on biodecolorization of dye [Dye]₀=10 ppm; pH=6.5</td>
<td>159</td>
</tr>
<tr>
<td>4.30 (a)</td>
<td>Effect of temperature on biodecolorization of OR by Phanerochaete</td>
<td>159</td>
</tr>
<tr>
<td>4.30 (b)</td>
<td>Effect of temperature on biodecolorization of AB by Phanerochaete</td>
<td>160</td>
</tr>
<tr>
<td>4.30 (c)</td>
<td>Effect of temperature on biodecolorization of AR by Phanerochaete</td>
<td>160</td>
</tr>
<tr>
<td>4.31 (a)</td>
<td>Effect of mass on biodecolorization of OR dye by Phanerochaete sp.</td>
<td>162</td>
</tr>
<tr>
<td>4.31 (b)</td>
<td>Effect of mass on biodecolorization of AB dye by Phanerochaete sp.</td>
<td>163</td>
</tr>
<tr>
<td>4.31 (c)</td>
<td>Effect of mass on biodecolorization of AR dye by Phanerochaete sp.</td>
<td>164</td>
</tr>
<tr>
<td>4.32</td>
<td>Effect of kinetics of biodecolorization of azo dyes by Phanerochaete Concentration = 10.50, 100 ppm; pH = 6.5</td>
<td>166</td>
</tr>
<tr>
<td>4.33</td>
<td>Effect of enzyme on decolorization of azo dyes</td>
<td>167</td>
</tr>
</tbody>
</table>