PREFACE

Molecular imprinting technology is a developing technique for the preparation of polymers having specific molecular recognition properties for a given compound. The design, development and application of molecularly imprinted polymers (MIPs) over recent years reflects the maturation of this field of study and the broad interest, it has attracted from the scientific community in general. Molecularly imprinted polymers are gaining increasing importance in separation technology. Applications of imprinted polymers in various have been studied and numerous papers and patents are evidence of the rapid progress in this area. The physical and chemical characteristics of molecularly imprinted polymers are highly appealing. These materials exhibit high physical and chemical resistance against external degrading factors. Thus molecularly imprinted polymers are remarkably stable against mechanical stress and high temperatures and pressures. The present study describes the design of imprinted polymers with high specificity and selectivity and optimized the conditions. The successful development of a polymeric system with remarkable specificity and selectivity by molecular imprinting technology are detailed in this thesis. The easy preparation, low cost, high selective and specific recognition properties towards the template molecules made the molecularly imprinted polymers to perform versatile functions.