CHAPTER 4

*ON TRANSFINITE CONVEX DIMENSION

4.1 INTRODUCTION

In [VAD₁] Van de vel introduced the notion of convex dimension cind for a topological convex structure. In this chapter we introduce the notion of transfinite convex dimension trcind. In section 4.2 we compare the transfinite topological dimension and transfinite convex dimension (Prop 4.2.3). A characterization of trcind in terms of hyperplanes (Cor 4.2.5) is obtained. In section 4.3 we obtain a characterization of trcind in terms of mappings to cubes (Prop 4.3.1). Throughout this chapter we assume that the convex structure is S_1 and closure stable.

4.2 TRANSFINITE CONVEX DIMENSION

4.2.1. Definition

Let X be a topological convex structure. Then:

1. $\text{trcind} (X) = -1$ if and only if $X = \emptyset$

2. $\text{trcind} (X) \leq \alpha$, where α is an ordinal if and only if to each pair consisting of a convex closed set C and a point $p \in X \setminus C$, there exists a convex closed screening (A, B) and an ordinal $\beta < \alpha$ such that $\text{trcind} (A \cap B) \leq \beta$.

We say that $\text{trcind} (X) = \alpha$ if and only if $\text{trcind} (X) \leq \alpha$ but $\text{trcind} (X) \neq \beta$ for any $\beta < \alpha$.

* Some of the results in this chapter are presented in the international conference on Transform Techniques and their applications at St. Joseph's College, Irinjalkuda, 2000 Dec.
4.2.2 Proposition

\[\text{trcind (C)} \leq \text{trcind (X)} \text{ for each convex subset C of a topological convex structure X.} \]

Proof

Let \(\text{trcind (X)} = \alpha \), an ordinal. Assume that the result is true for spaces with dimension less than \(\alpha \). Let \(p \in C \) and \(D \subseteq C \), where \(D \) is a convex closed subset of \(C \) such that \(p \notin D \). Then \(\text{cl} (D) \), the closure of \(D \) is a convex closed set in \(X \) and \(D = \text{cl}(D) \cap C \) with \(p \notin \text{cl}(D) \). Since \(\text{trcind (X)} = \alpha \), there exists a \(\beta < \alpha \) and a screening \((A, B) \) of convex closed sets in \(X \) such that \(\text{trcind (A \cap B)} \leq \beta \).

Take \(A' = A \cap C \) and \(B' = B \cap C \). Then \((A', B') \) is a pair of convex closed sets in \(C \) which screen \(p \) and \(D \). Also \(A' \cap B' \subseteq A \cap B \), then by assumption \(\text{trcind (A' \cap B')} \leq \beta \).

4.2.3 Proposition

Let \(X \) be a topological convex structure of which the weak topology is separable and metrizable. Then \(\text{trind (X_w)} \leq \text{trcind (X)} + k \), for some integer \(k \).

(Here \(\text{trind} \) denotes the transfinite small inductive dimension).

Proof

Let \(\alpha \) be an infinite ordinal and let \(\text{trcind (X)} \leq \alpha \). Assume that the result is true if \(\text{trcind} < \alpha \). Let \(A \subseteq X \) be a closed set and \(p \notin A \). Since we are considering the weak topology, there exists convex closed sets \(C_1, C_2, \ldots, C_m \) such...
that \(A \subseteq \bigcup_{i=1}^{m} C_i \) and \(p \notin \bigcup_{i=1}^{m} C_i \). By the definition of \(\text{trcind} \), for each \(i = 1, 2, \ldots, m \), there is a convex closed screening \((D_i, E_i)\) of \(p \) and \(C_i \) such that \(\text{trcind}(D_i \cap E_i) < \beta_i \) where \(\beta_i < \alpha \). Take \(D = \bigcup_{i=1}^{m} D_i \). Then \(D \) is a closed neighbourhood of \(p \) disjoint from \(A \) and \(\text{Bd}(D) \subseteq (D_i \cap E_i) \). This is because

\[
\text{Bd}(D) \subseteq \bigcup_{i=1}^{m} \text{Bd}(D_i)
\]

\[
= \bigcup_{i=1}^{m} \text{cl}(D_i) \cap \text{cl}(X \setminus D_i)
\]

\[
= \bigcup_{i=1}^{m} (\text{cl}(D_i) \cap \text{cl}(E_i \setminus D_i)) \subseteq \bigcup_{i=1}^{m} (D_i \cap E_i).
\]

By induction hypothesis, \(\text{trcind}(D_i \cap E_i) \leq \beta_i + m_i \) for every \(i \), where each \(m_i \) is an integer. Now by the sum theorem for \(\text{trcind} \) ([CH2], See prop 0.3.10),

\[
\text{trcind \text{Bd}}(D) \leq \text{trcind}(\bigcup_{i=1}^{m} (D_i \cap E_i)).
\]

\[
\leq \max(\beta_i + m_i) + m
\]

\[
= \max\{\alpha + m_i\} + m
\]

\[
= \alpha + k \text{ for some integer } k.
\]

4.2.4 Proposition

Let \(X \) be a non empty FS3 space with connected convex sets. If \(H \subseteq X \) is a half space, then \(\text{trcind}(\text{cl}(H) \setminus H) < \text{trcind}(X) \).

Proof

Assume that \(\text{trcind}(X) \leq \alpha \), an ordinal and that the result is true if \(\text{trcind} < \alpha \). Let \(C \subseteq \text{cl}(H) \setminus H \) be a convex closed set and \(p \notin C \). Consider \(\text{cl}(H) \).
Since X is closure stable, $\text{cl} \ (H)$ is convex in X. Then $\text{trcind} \ (\text{cl} \ (H)) \leq \text{trcind} \ (X) \leq \alpha$.

Also $C = \text{cl} \ (C) \cap \text{cl} \ (H) \setminus H$, where $\text{cl} \ (C)$ is convex closed in $\text{cl} \ (H)$ and $p \notin \text{cl} \ (C)$.

Then there exists a convex closed screening (A, B) of $\text{cl} \ (C)$ and p in $\text{cl} \ (H)$ such that $\text{trcind} \ (A \cap B) \leq \beta < \alpha$. Without loss of generality we can assume that (A, B) is a minimal screening pair. Also since H is dense in $\text{cl} \ (H)$, we can conclude that $H \cap A \cap B$ is dense in $A \cap B$. Therefore,

$$(\text{cl} \ (H) \setminus H) \cap A \cap B$$

$$= \text{cl} \ (H) \cap (A \cap B) \setminus H$$

$$= \text{cl} \ (H) \cap (\text{cl} \ (A \cap B)) \setminus H$$

$$= (A \cap B) \setminus H = (A \cap B) \setminus (H \cap A \cap B)$$

Since $(A \cap B)$ is a relative half space of $A \cap B$, by inductive hypothesis, $\text{trcind} \ ((\text{cl} \ (H) \setminus H) \cap A \cap B) \leq \gamma$, where $\gamma < \beta$. This shows that each relatively convex closed set C of $\text{cl} \ (H) \setminus H$ and each point $p \notin C$ of $\text{cl} \ (H) \setminus H$, can be screened by convex closed sets of the form

$(\text{cl} \ (H) \setminus H) \cap A$ and $(\text{cl} \ (H) \setminus H) \cap B$ and $\text{trcind} \ ((\text{cl} \ (H) \setminus H) \cap A \cap B) \leq \gamma < \beta$.

Thus $\text{trcind} \ (\text{cl} \ (H) \setminus H) \leq \beta < \alpha$.

A set of the type $\text{cl} \ (H) \setminus H$ where H is an open half space of X is called a hyperplane.
4.2.5 Corollary

Let \(X \) be an FS3 space with connected convex sets. The following statements are equivalent.

1. \(\text{trcind} (X) \leq \alpha \), where \(\alpha \) is an ordinal.
2. Corresponding to each hyper pane \(H \subseteq X \), there exists a \(\beta < \alpha \) such that \(\text{trcind} (H) \leq \beta \).

Proof

(1) \(\Rightarrow \) (2) by using prop (4.2.4) above. Now assume (2). Let \(C \) be a convex closed set in \(X \) and \(p \in C \). By FS3, there exists a continuous \(cp \) functional \(f : X \to \mathbb{R} \) separating \(p \) and \(C \). Let \(f(C) \subseteq (-\infty,0] \) and \(f(p) > 0 \).

Take \(H = f^{-1} (-\infty, f(p)/2) \). Then \(\text{cl} (H) \) and \(\text{cl} (\overline{X\setminus H}) \) is a convex closed screening of \(p \) and \(C \) and \(\text{cl} (H) \cap \text{cl} (\overline{X\setminus H}) = \text{Bd} (H) \) and \(\text{trcind} (\text{Bd} (H)) \leq \beta < \alpha \).

4.2.6 Proposition

Let \(X \) be an FS3 space with connected convex sets. If \(C \) is a non-empty convex subset of \(X \) of dimension \(\alpha > 0 \), an ordinal, then the intersection of all relatively dense convex subsets of \(C \) is relatively dense in \(C \).

Proof

Assume that the result is true for all convex sets with dimension less than \(\alpha \). Let \(D \) be a convex closed set in \(X \) and \(p \in X \setminus D \). By FS3, there exists an \(\alpha \)-pseudo dense convex subset of \(D \) induces a dense convex subset of \(D \). Therefore the sets \(A_i \cap D \) are all dense in \(D \). Therefore \(\bigcap (A_i \cap D) = E \cap D \), which is a contradiction.

Let \(\text{trcind} (C) = \alpha \). Assume that the result is true for all convex sets with dimension less than \(\alpha \). Let \(E = \bigcap A_i \), where each \(A_i \) is a relatively dense convex subset of \(C \). To show that \(\text{cl} (E) = C \). Let \(p \in C \setminus \text{cl} (E) \). Then \(\text{cl} (E) \cap C \) is
a convex closed set in \mathcal{C} and $p \not\in \text{cl} (E) \cap \mathcal{C}$. Then there exists a minimal convex closed screening of $\text{cl} (E) \cap \mathcal{C}$ and p whose intersection D satisfies $\text{trcind} (D) \leq \beta$, where $\beta < \alpha$. Also each dense convex subset of \mathcal{C} induces a dense convex subset of D. Therefore the sets $A_i \cap D$ are all dense in D. Therefore $\bigcap_i \{ A_i \cap D \} = E \cap D$ is relatively dense D. Thus $E \cap D \neq \emptyset$, which is a contradiction.

4.2.7 Proposition

In an FS$_3$ space with connected convex sets, a convex set and its closure have the same convex dimension.

Proof

Let X be the space and $C \subseteq X$ be convex in X. Without loss of generality assume that C is dense in X. We will show that $\text{trcind} (C) = \text{trcind} (X)$. We have $\text{trcind} (C) \leq \text{trcind} (X)$. To show that $\text{trcind} (X) \leq \text{trcind} (C)$. Let $\text{trcind} (C) \leq \alpha$, an ordinal. We prove the result by transfinite induction.

Assume that the result is true for all convex sets with dimension less than α. Let D be a convex closed set in X and $p \in X \setminus D$. By FS$_3$, there exists an open half space $O \subseteq X$ such that $D \subseteq \text{cl} (O)$ and $p \not\in \text{cl} (O)$. Now consider a minimal convex closed screening D_1, D_2 of D and p with $D_1 \subseteq \text{cl} (O)$ and $D_2 \subseteq X \setminus O$. Now $D_1 \cap D_2 \subseteq \text{cl} (O) \cap X \setminus O \subseteq \text{Bd} (O)$. Since C is dense in X, $\text{cl}_C (O \cap C) = \text{cl} (O) \cap C$. Similarly $\text{cl}_C (X \setminus O \cap C) = X \setminus O \cap C$. Therefore $\text{Bd} (O) \cap C$ is the relative boundary of $O \cap C$ in C. Then, $\text{trcind} (D_1 \cap D_2 \cap C) \leq \text{trcind} (\text{Bd} (O) \cap C) \leq \beta < \alpha$. (By corollary (4.2.5)). Since C is dense and convex,
D₁ ∩ D₂ ∩ C is a dense subset of D₁ ∩ D₂. By induction hypothesis
trcind (D₁ ∩ D₂ ∩ C) = trcind (D₁ ∩ D₂).

Thus trcind (X) ≤ α.

4.2.8 Proposition

In an FS₃ space with connected convex sets and of dimension α, an
ordinal, each dense half space has a non-empty interior. In fact, its interior meets
every non-empty convex open set of the space.

Proof

Let X be the space and let H ⊆ X be a dense half space. Let O ≠ ∅ be
a convex open set in X. Then H ∩ O is a relatively dense half space of O. By
corollary (4.2.4), trcind (O \ H) < trcind (O). Now by prop (4.2.7), O \ H is not
dense in O. Then Φ ≠ int O (O ∩ H) ⊆ int (H).

4.3 TRANSFINITE CONVEX DIMENSION AND CONVEXITY PRESERVING MAPS

4.3.1 Proposition

Let X be an FS₃ space with connected convex sets and let [0,1]^{N_0} be
equipped with the standard median convexity. If C ⊆ X is a convex set with
trcind(C) ≥ N₀, then there exists a continuous convexity preserving function
f = (fₙ) : X → [0,1]^{N₀}, where for each n, fₙ is a continuous convexity preserving
function from X → [0,1]ⁿ such that fₙ (C) = [0,1]ⁿ.
Proof

Since \(\text{trcind}(C) \geq \aleph_0 \), \(\text{trcind}(C) > n \) for all \(n \). Then for each \(n \), there
exists a continuous convexity preserving function \(f_n : X \rightarrow [0,1]^n \) satisfying
\(f_n(C) = [0,1]^n \) (See theorem[0.3.16]). Then the function \(f = (f_n) \) is a continuous
convexity preserving function from \(X \) to \([0,1]^\aleph_0 \). For, let \(C \) be any subbasic
convex set in \([0,1]^\aleph_0 \). Then \(C = \pi_i^{-1}(C_i) \), where \(C_i \) is convex in \([0,1]^i \).

Therefore \(f^{-1}(\pi_i^{-1}(C_i)) = \{ x \in X : f_n(x) \in \pi_n(\pi_i^{-1}(C_i)) \text{ for all } n \} \)
\(= \cap_n f_n^{-1}(\pi_n(\pi_i^{-1}(C_i))) \), which is convex in \(X \).

4.3.2 Proposition

Let \(X \) and \(Y \) be FS3 spaces with connected convex sets and let \(f : X \rightarrow Y \) be a closed, continuous and convexity preserving function of \(X \) onto \(Y \).

Then \(\text{trcind}(X) \geq \text{trcind}(Y) \).

Proof

We will show that \(\text{trcind}(Y) \geq \alpha \) implies that \(\text{trcind}(X) \geq \alpha \), where \(\alpha \)
is any ordinal. Assume that the statement is valid for all \(\beta < \alpha \). Now if
\(\text{trcind}(Y) \geq \alpha \), then by corollary (4.2.5), there is an open half space \(O \) of \(Y \) such
that for any ordinal \(\beta < \alpha \), \(\text{trcind}(\text{Bd}(O)) \geq \beta \). Then the set \(P = f^{-1}(O) \) is an open
half space of \(X \) and since \(f \) is closed and surjective \(f(\text{Bd}(P)) = \text{Bd}(O) \). Hence \(f \)
duces a closed convexity preserving map from \(\text{Bd}(P) \) to \(\text{Bd}(O) \) which is onto
and by inductive assumption, \(\text{trcind}(\text{Bd}(P)) \geq \beta \). This implies that \(\text{trcind}(X) \geq \alpha \).
4.3.3 Corollary

Let X be an FS$_3$ space with connected convex sets and with compact polytopes. Then $\text{trcind}(X) \geq \aleph_0$ if and only if for each n, there exists a polytope P_n such that $\text{trcind}(P_n) \geq n$.

Proof

If for each n, there exists a polytope P_n such that $\text{trcind}(P_n) \geq n$, then $\text{trcind}(X) \geq n$ for all n, and hence $\text{trcind}(X) \geq \aleph_0$. On the other hand if $\text{trcind}(X) \geq \aleph_0$, then there exists a continuous convexity preserving function $f = (f_n) : X \to [0,1]^\aleph_0$, where each $f_n : X \to [0,1]^n$ is continuous, convexity preserving and onto. For each f_n, take one pre-image of each corner point. Let F_n be the resulting set. Then f_n maps $\text{co}(F_n)$ onto $[0,1]^n$. Thus $\text{trcind}(\text{co}(F_n)) \geq n$.

References

