CONTENTS

Acknowledgements i
Abstract ii
Contents v

CHAPTER 1: INTRODUCTION

1.1 TRACE ANALYSIS 1
1.2 PRECONCENTRATION 2
1.2.1 Precipitation 3
1.2.2 Evaporation 3
1.2.3 Electrodeposition 3
1.2.4 Flotation 4
1.2.5 Ion exchange 5
1.2.6 Liquid-liquid extraction 5
1.2.7 Solid phase extraction (SPE) 6
1.2.7.1 Basic principles 6
1.2.7.2 Sorbent formats 8
1.2.7.3 Sorbents used in solid phase extraction 11
1.2.7.4 Chelating groups 22
1.3 SCOPE OF THE SOLID-PHASE EXTRACTION 24
1.4 SCOPE AND OBJECTIVES OF THE PROPOSED WORK 24
REFERENCES 25

CHAPTER 2: QUINOLINE-8-THIOL MODIFIED NAPHTHALENE AS SOLID PHASE EXTRACTANT FOR THE PRECONCENTRATION OF MERCURY(II)

2.1 INTRODUCTION 30
2.2 PRELIMINARY INVESTIGATIONS 33
2.3 OPTIMIZATION OF MAIN EXPERIMENTAL VARIABLES 33
2.3.1 Effect of pH 33
2.3.2 Effect of Quinoline-8-thiol concentration in naphthalene 35
2.3.3 Effect of time of stirring 36
2.3.4 Effect of aqueous phase volume 36
2.3.5 Choice of solvent 37

2.4 CALIBRATION GRAPH, SENSITIVITY AND PRECISION 38

2.5 EFFECT OF DIVERSE IONS 38

2.6 SPECTRAL STUDIES 41

2.7 EQUILIBRIUM LOADING OF CHELATING AGENT MODIFIED NAPHTHALENE 42

2.8 APPLICATION 42

2.9 EXPERIMENTAL 45

2.9.1 Apparatus 45

2.9.2 Reagents 45

2.9.3 Preparation of quinoline-8-thiol modified naphthalene 46

2.10 GENERAL PROCEDURE 46

2.10.1 Solid phase extraction and determination of mercury(II) 46

2.10.2 Procedure for analysis of hair reference material 46

2.10.3 Procedure for analysis of human hair samples 47

2.11 CONCLUSION 47

REFERENCES 48

CHAPTER 3: REMOVAL OF TOXIC MERCURY(II) SPECIES FROM CHLOR-ALKALI INDUSTRIAL WASTES 50

3.1 INTRODUCTION 50

3.2 PREPARATION OF 1-(2-THIAZOLYL AZO) NAPHTHOL (TAN) 51

3.3 PRELIMINARY INVESTIGATIONS 52

3.4 OPTIMIZATION OF MAIN EXPERIMENTAL VARIABLES 52

3.4.1 Effect of pH 52

3.4.2 Effect of TAN concentration in activated carbon 52
3.4.3 Effect of weight of chelate sorbed activated carbon

3.4.4 Effect of time of stirring

3.4.5 Effect of aqueous phase volume

3.4.6 Choice of eluting agent

3.4.7 Reuse studies

3.5 EFFECT OF DIVERSE IONS

3.6 EQUILIBRIUM LOADING OF MERCURY(II) ONTO TAN

3.7 MERCURY(II) REMOVAL STUDIES

3.7.1 Aqueous solutions

3.7.2 Synthetic chlor-alkali effluent

3.7.3 Brine sludge

3.7.4 Removal of Mercury(II) from cell house effluent

3.8 EXPERIMENTAL

3.8.1 Apparatus

3.8.2 Reagents

3.8.3 Preparation of TAN sorbed activated carbon

3.9 REMOVAL STUDIES

3.10 CONCLUSION

REFERENCES

CHAPTER 4: SOLID PHASE EXTRACTIVE PRECONCENTRATION OF URANIUM(VI) USING DIARYLAZOBISPHENOL MODIFIED ACTIVATED CARBON

4.1 INTRODUCTION

4.2 SYNTHESIS OF DIARYLAZOBISPHENOL

4.3 CHARACTERIZATION OF DIARYLAZOBISPHENOL

4.3.1 IR spectra

4.3.2 1H NMR

4.3.3 13C NMR

4.3.4 Elemental analysis
<table>
<thead>
<tr>
<th>Chapter Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4 PREPARATION OF DIARYLAZOBISPHENOL MODIFIED ACTIVATED CARBON (AC)</td>
<td>66</td>
</tr>
<tr>
<td>4.5 PRELIMINARY INVESTIGATIONS</td>
<td>66</td>
</tr>
<tr>
<td>4.6 OPTIMIZATION OF MAIN EXPERIMENTAL VARIABLES</td>
<td>67</td>
</tr>
<tr>
<td>4.6.1 Preparation of column</td>
<td>67</td>
</tr>
<tr>
<td>4.6.2 Effect of pH</td>
<td>68</td>
</tr>
<tr>
<td>4.6.3 Effect of diarylazobisphenol concentrations</td>
<td>69</td>
</tr>
<tr>
<td>4.6.4 Effect of amounts of diarylazobisphenol modified activated carbon</td>
<td>69</td>
</tr>
<tr>
<td>4.6.5 Effect of preconcentration flow rate</td>
<td>70</td>
</tr>
<tr>
<td>4.6.6 Effect of elution flow rate</td>
<td>71</td>
</tr>
<tr>
<td>4.6.7 Effect of aqueous phase volume</td>
<td>71</td>
</tr>
<tr>
<td>4.6.8 Effect of diverse ions</td>
<td>73</td>
</tr>
<tr>
<td>4.6.9 Choice of eluting agent</td>
<td>74</td>
</tr>
<tr>
<td>4.7 CALIBRATION GRAPH, SENSITIVITY AND PRECISION</td>
<td>74</td>
</tr>
<tr>
<td>4.8 RETENTION CAPACITY OF DIARYLAZOBISPHENOL SUPPORTED ON ACTIVATED CARBON</td>
<td>76</td>
</tr>
<tr>
<td>4.9 ANALYSIS OF STANDARD REFERENCE MATERIAL (SUPPLIED BY NATIONAL RESEARCH COUNCIL, CANADA)</td>
<td>77</td>
</tr>
<tr>
<td>4.10 ANALYSIS OF SOIL AND MARINE SEDIMENT SAMPLES</td>
<td>78</td>
</tr>
<tr>
<td>4.11 REUSABILITY OF THE DIARYLAZOBISPHENOL MODIFIED ACTIVATED CARBON</td>
<td>80</td>
</tr>
<tr>
<td>4.12 ADSORPTION KINETICS</td>
<td>80</td>
</tr>
<tr>
<td>4.13 ADSORPTION ISOTHERMS</td>
<td>82</td>
</tr>
<tr>
<td>4.14 EXPERIMENTAL</td>
<td>84</td>
</tr>
<tr>
<td>4.14.1 Chemicals</td>
<td>84</td>
</tr>
<tr>
<td>4.14.2 Apparatus</td>
<td>85</td>
</tr>
<tr>
<td>4.14.3 Procedure for the synthesis of diarylazobisphenol</td>
<td>85</td>
</tr>
<tr>
<td>4.14.4 General procedure</td>
<td>86</td>
</tr>
<tr>
<td>4.15 CONCLUSION</td>
<td>86</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>87</td>
</tr>
</tbody>
</table>

CHAPTER 5: SOLID PHASE EXTRACTIVE PRECONCENTRATION OF THORIUM(IV) BY USING β-DIKETONE FUNCTIONALIZED AMBERLITE XAD-4

<table>
<thead>
<tr>
<th>Chapter Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 INTRODUCTION</td>
<td>89</td>
</tr>
</tbody>
</table>
5.2 SYNTHESIS OF β-DIKETONE FUNCTIONALIZED AMBERLITE XAD-4

5.3 CHARACTERIZATION

5.3.1 IR spectra

5.4 PRELIMINARY INVESTIGATIONS

5.5 OPTIMIZATION OF MAIN EXPERIMENTAL VARIABLES

5.5.1 Effect of pH

5.5.2 Effect of preconcentration flow rate

5.5.3 Effect of eluent concentration

5.5.4 Effect of elution flow rate

5.5.5 Effect of eluent volume

5.5.6 Effect of nature of eluent

5.5.7 Effect of sample volume

5.6 CALIBRATION GRAPH, SENSITIVITY AND PRECISION

5.7 RETENTION CAPACITY OF β-DIKETONE FUNCTIONALIZED AMBERLITE XAD-4

5.8 STABILITY AND REUSABILITY OF THE RESIN

5.9 TOLERANCE LIMITS OF ELECTROLYTES AND CATIONS

5.10 APPLICATIONS

5.11 EXPERIMENTAL

5.11.1 Reagents

5.11.2 Apparatus

5.11.3 Procedure for the synthesis of β-diketone functionalized Amberlite XAD-4

5.11.4 General Procedure

5.11.4.1 Preconcentration and determination of thorium(IV)

5.11.4.2 Analysis of rare earth chlorides

5.12 CONCLUSION

REFERENCES
HUMAN SAMPLES AND DETERMINATION BY FLAME AAS

CHAPTER 1

6.1 INTRODUCTION 112

6.2 PRELIMINARY STUDIES 117

6.3 OPTIMIZATION OF ANALYTICAL PARAMETERS 117

6.3.1 Effect of pH 117

6.3.2 Effect of NH₃ concentration 118

6.3.3 Effect of concentration of 2,3-dihydroxy naphthalene 119

6.3.4 Choice of eluent 120

6.4 OPTIMIZATION OF FLOW INJECTION CONDITIONS 120

6.4.1 Flow conditions 120

6.4.2 Loading time 121

6.5 CALIBRATION GRAPH AND PRECISION 122

6.6 PERFORMANCE OF ON-LINE PRECONCENTRATION SYSTEM 125

6.7 INTERFERENCE STUDIES 126

6.8 APPLICATION 126

6.8.1 Analysis of standard reference materials IAEA – soil 7 (supplied by IAEA, Vienna) 126

6.8.2 Analysis of soil samples 127

6.8.3 Analysis of human hair samples 127

6.9 EXPERIMENTAL 128

6.9.1 Instrumentation 128

6.9.2 Reagents 132

6.9.3 Procedure 132

6.9.4 Analysis of standard reference material (IAEA-soil 7) and soil 135

6.9.5 Analysis of hair samples 135

6.10 CONCLUSIONS 135

REFERENCES 136

CHAPTER 7: CONCLUSIONS 140

7.1 Suggestions for future work 142

LIST OF PUBLICATIONS 144