List of figures
Figure 1.1: Pharmacological treatment of hyperglycemia according to site of action.

Figure 1.2: Role of insulin and glucagon in glucose homeostasis.

Figure 1.3: Mechanism of action of streptozotocin

Figure 1.4: Relationship between oxidative stress and complications of diabetes mellitus.

Figure 1.5: TCA cycle

Figure 1.6: Electron transport chain ROS generation by mitochondria and dissipation of the proton gradient by UCPs. Scavenging by antioxidant defenses is insufficient to prevent oxidative stress in hyperglycemia.

Figure 1.7: Effect of edible mushrooms on the cholesterol metabolism.

Figure 1.8: Antiatherosclerotic effects and potential involved mechanisms of different edible mushrooms.

Figure 1.9: *Phellinus rimosus* growing on tree trunk.

Figure 3.1: In vitro superoxide radical scavenging activity of the aqueous ethanol extract of *P. rimosus*.

Figure 3.2: In vitro hydroxyl radical scavenging activity of the aqueous ethanol extract of *P. rimosus*.

Figure 3.3: In vitro Nitric oxide radical scavenging activity of the aqueous ethanol extract of *P. rimosus*.

Figure 3.4: In vitro lipid peroxidation inhibiting activity of the aqueous ethanol extract of *P. rimosus*.

Figure 3.5: In vitro DPPH radical scavenging activity of the aqueous ethanol extract of *P. rimosus*.

Figure 3.6: In vitro Ferric radical reducing power of the aqueous ethanol extract of *P. rimosus*.
Figure 3.7: In vitro ABTS radical scavenging activity of the aqueous ethanol extract of *P. rimosus*.

Figure 4.A.1: Effect *P. rimosus* and glibenclamide on the oral glucose tolerance test in rats.

Figure 4.A.2: Effects of *P. rimosus* on atherogenic index (AI) in alloxan (AL) induced diabetic rats.

Figure 4.A.3: Effect of *P. rimosus* and glibenclamide treatment on the levels of GSH in the blood of alloxan (AL) induced diabetic rats.

Figure 4.A.4: Effect of *P. rimosus* and glibenclamide treatment on the levels of GSH in the pancreas, liver and kidney of alloxan (AL) induced diabetic rats.

Figure 4.A.5: Effect of *P. rimosus* and glibenclamide treatment on the levels of lipid peroxidation in the pancreas, liver and kidney of alloxan (AL) induced diabetic rats.

Figure 4.A.6: Histopathology of kidney in alloxan induced diabetic rats.

Figure 4.A.7: Histopathology of liver in alloxan induced diabetic rats.

Figure 4.A.8: Histopathology of pancreas in alloxan induced diabetic rats.

Figure 4.B.1: Effect of *P. rimosus* and glibenclamide on insulin level in streptozotocin (STZ) induced diabetic rats.

Figure 4.B.2: Effect of *P. rimosus* and glibenclamide treatment on the levels of GSH in the blood of streptozotocin (STZ) induced diabetic rats.

Figure 4.B.3: Effect of *P. rimosus* and glibenclamide treatment on the GSH levels in the pancreas, liver and kidney of streptozotocin (STZ) induced diabetic rats.

Figure 4.B.4: Effect of *P. rimosus* and glibenclamide treatment on the levels of lipid peroxidation in the pancreas, liver and kidney of streptozotocin (STZ) induced diabetic rats.

Figure 4.B.5: Effect of *P. rimosus* and glibenclamide treatment on the levels of renal mitochondrial GSH in the streptozotocin (STZ) induced diabetic rats.
Figure 4.B.6: Effect of *P. rimosus* and glibenclamide treatment on the levels lipid peroxidation in the renal mitochondria of streptozotocin (STZ) induced diabetic rats.

Figure 4.B.7: Effects of *P. rimosus* on atherogenic index (AI) in streptozotocin (STZ) induced diabetic rats.

Figure 4.B.8: Effect of *P. rimosus* on LDL/HDL ratio in streptozotocin (STZ) induced diabetic rats.

Figure 4.B.9: Effect of *P. rimosus* on liver glycogen levels in streptozotocin (STZ) induced diabetic rats

Figure 4.B.10: Effect of *P. rimosus* treatment on renal mitochondrial ATP in streptozotocin (STZ) induced diabetic rats

Figure 4.B.11: Histopathology of kidney in streptozotocin induced diabetic rats.

Figure 4.B.12: Histopathology of liver in streptozotocin induced diabetic rats.

Figure 4.B.13: Histopathology of pancreas in streptozotocin induced diabetic rats.

Figure 5.1: Effect of *P. rimosus* on atherogenic index (AI) in triton-WR1339 (TRI) induced hyperlipidemic rats

Figure 5.2: Effect of *P. rimosus* on LDL/HDL ratio in triton-WR1339 (TRI) induced hyperlipidemic rats

Figure 5.3: Effect of *P. rimosus* on atherogenic index (AI) in high cholesterol diet (HCD) induced hyperlipidemic rats

Figure 5.4: Effect of *P. rimosus* on LDL/HDL ratio in high cholesterol diet (HCD) induced hyperlipidemic rats

Figure 5.5: Effect of *P. rimosus* and atorvastatin treatment on the levels of GSH in the liver and heart of high cholesterol diet induced hyperlipidemic rats

Figure 5.6: Effect of *P. rimosus* and atorvastatin treatment on lipid peroxidation levels in the liver and heart of high cholesterol diet (HCD) induced hyperlipidemic rats

Figure 5.7: Histopathology of liver in high cholesterol diet induced hyperlipidemic rats.
Figure 6.1: Effect of aqueous ethanol extract of *P. rimosus* on the body weight of animals before and after the treatments.

Figure 6.2: Effect sub acute toxicity studies of *P. rimosus* on liver histopathology

Figure 6.3: Effect of sub acute toxicity studies of *P. rimosus* on kidney histopathology.

Figure 7.1.A: HPTLC plate of *P. rimosus* derivatised plate.

Figure 7.1.B: HPTLC plate of *P. rimosus* developed plate at 366nm.

Figure 7.1.C: HPTLC plate of *P. rimosus* developed plate at 254nm.

Figure 7.2: Graphical representation of the HPTLC pattern of *P. rimosus*.