List of tables
Table 1.1: Edible mushrooms with reported hypocholesterolemic properties.

Table 3.1: *In vitro* antioxidant activity of the aqueous ethanol extract of *P. rimosus*.

Table 4.A.1: Effect of *P. rimosus* and glibenclamide on alloxan (AL) induced diabetic rats

Table 4.A.2: Effect of *P. rimosus* and glibenclamide on serum lipid levels in alloxan induced diabetic rats.

Table 4.A.3: Effect of *P. rimosus* on the activities of SOD, CAT and GPx in the blood of alloxan induced diabetic rats.

Table 4.A.4: Effect of *P. rimosus* on the activities of SOD, CAT and GPx in the pancreas, liver and kidney of Wistar rats.

Table 4.A.5: Effect of *P. rimosus* and glibenclamide on liver glycogen levels in alloxan (AL) induced diabetic rats

Table 4.B.1: Effect of *P. rimosus* and glibenclamide on streptozotocin (STZ) induced diabetic rats.

Table 4.B.2: Effect of *P. rimosus* on body weight in streptozotocin (STZ) induced diabetic rats.

Table 4.B.3: Effect of *P. rimosus* on the activities of SOD, CAT and GPx in the blood of streptozotocin (STZ) induced diabetic rats.

Table 4.B.4: Effect of *P. rimosus* on the activities of SOD, CAT and GPx in the pancreas, liver and kidney of diabetic rats.

Table 4.B.5: Effect of *P. rimosus* on the renal mitochondrial antioxidant status (MnSOD and GPx) in streptozotocin (STZ) induced diabetic rats.

Table 4.B.6: Effect of *P. rimosus* and glibenclamide on serum lipid levels in STZ induced diabetic rats.

Table 4.B.7: Effect of *P. rimosus* on the activity of liver function enzymes in streptozotocin (STZ) induced diabetic rats.
Table 4.B.8: Effect of *P. rimosus* on the serum urea and creatinine concentration in streptozotocin (STZ) induced diabetic rats.

Table 4.B.9: Effect of *P. rimosus* and glibenclamide on the kreb's cycle dehydrogenases in the kidney of diabetic rats.

Table 4.B.10: Effect of *P. rimosus* and glibenclamide treatment on the activity of respiratory chain complexes I, III and IV in the kidney of diabetic rats.

Table 5.1: Composition of high cholesterol and normal diet.

Table 5.2: Effect of *P. rimosus* on serum lipid levels in Triton WR-1339-induced hyperlipidemic rats.

Table 5.3: Effect of *P. rimosus* and atorvastatin on serum lipid levels of high cholesterol diet (HCD) induced hyperlipidemic rats.

Table 5.4: Effect of *P. rimosus* on HMG Co A/Mevalonate ratio in liver of Triton WR-1339 induced hyperlipidemic rats.

Table 5.5: Effect of *P. rimosus* on HMG Co A/Mevalonate ratio in liver of high cholesterol diet induced (HCD) hyperlipidemic rats.

Table 5.6: Effect of *P. rimosus* on the activities of SOD, CAT and GPx in the liver and heart of high cholesterol diet (HCD) induced hyperlipidemic rats.

Table 5.7: Effect of *P. rimosus* on the activity of liver function enzymes in high cholesterol diet (HCD) induced hyperlipidemic rats.

Table 5.8: Effect of *P. rimosus* on body weight (g) in high cholesterol diet (HCD) induced hyperlipidemic rats.

Table 6.1: Effect of *P. rimosus* on the activity of liver function enzymes.

Table 6.2: Effect of *P. rimosus* on serum urea and creatinine levels.

Table 6.3: Effect *P. rimosus* on total haemoglobin concentration, WBC and RBC counts.

Table 7.1: Phytochemical screening of aqueous-ethanol extract of *P. rimosus*.

Table 7.2: HPTLC analysis of the *P. rimosus* extract using Toluene : ethylacetate : methanol : formicacid (50: 50 : 5 : 5) as the solvent system.