Chapter 6

Conclusions and Future Scope

6.1 Conclusions

This thesis emphasizes on copy move image forgery detection techniques. New approaches have been proposed to address open issues such as accuracy and execution time.

Chapter 2 presents projection profiling based cloning detection. A fast algorithm for detecting copy move region which is tested on more than 50 images of various sizes such as 256×256 and 512×512 etc. The accuracy of the proposed algorithm is 88 %. The execution time is comparative less with the various existing algorithms. The new improvements have been suggested in terms of accuracy as well as execution time compare with existing techniques.

In chapter 3, we have designed a hybrid method for cloning detection using ring projection and modified fast discrete haar wavelet transform. It is used to detect copy-move image forgery by comprises scheme of haar wavelet and RPT, the time efficiency can be greatly improved. The accuracy of proposed method is 90.75 % and execution time is also improved.
In chapter 4, we have developed a direct fuzzy transform and ring projection based copy-move image forgery detection method for detecting copy-move forgery. This approach is successfully able to improve the accuracy as well as reduce the execution time and robust to attacks such as rotation, scaling and blurring etc. The accuracy is 91.25%.

Chapter 5 presents the texture features extraction method using intuitionistic fuzzy local binary pattern. These extracted features are found more informative and efficient compare to other reported algorithms. This technique can be used in many applications areas of image processing.

6.2 Future Scope

In future, proposed algorithm can be tested on color images and texture feature extraction technique can be applied to extract feature vector. Further, these features may be used to detect forgery as well as the other image processing areas such as pattern recognition, medical imaging, face detection and so on.
Publications

Journal Papers

Conference Papers
