Contents

1 Introduction and Background 3

1.1 Introduction . 3
 1.1.1 Pixel-Based Image Forgery Detection 4
 1.1.2 Copy-Move (Cloning) . 5
 1.1.3 Resampling (Resize, Stretch, Rotation) 6
 1.1.4 Splicing . 6
 1.1.5 Statistical . 7

1.2 Related Work . 7
 1.2.1 Key-point based Approaches 10
 1.2.2 Block Based Methods . 11

1.3 Feature Extraction Techniques . 14

1.4 Performance Measures . 16

1.5 Problem Identification . 17

1.6 Objectives of Thesis . 18

1.7 Organization of the Thesis . 19
2 Projection Profiling based Copy-Move Forgery Identification

2.1 Summary .. 20
2.2 Introduction .. 21
2.3 Proposed Algorithm 22
2.4 Results and Discussion 24
2.5 Conclusion .. 33

3 Modified Fast Discrete Haar Wavelet and Ring Projection Transform based Cloning detection

3.1 Summary .. 35
3.2 Introduction .. 36
3.3 Modified Fast Haar Wavelet Transform 37
 3.3.1 Features Extraction using Ring Projection Transform (RPT) 39
3.4 Proposed Algorithm 42
3.5 Results and Discussion 44
3.6 Conclusion .. 51

4 Cloning Detection Using Direct Fuzzy and Ring Projection Transform

4.1 Summary .. 52
4.2 Introduction .. 53
4.3 Fuzzy Transform .. 54
 4.3.1 Fuzzy Partition - Basic Functions 54
4.3.2 Direct Fuzzy Transform 57
4.3.3 F-Transform in Two Variables 58
4.4 Image Compression using F-Transform Method 60
4.5 Proposed Algorithm .. 61
4.6 Results and Discussion 64
4.7 Conclusion .. 69

5 Intuitionistic Fuzzy Local Binary Pattern using Texture Feature Extraction 70
5.1 Summary .. 70
5.2 Introduction ... 71
5.3 Local Binary Pattern 71
5.4 Intuitionistic Fuzzy Local Binary Pattern 73
5.5 Performance Metrics: Entropy of IFLBP Features 76
5.6 Experimental Results and Analysis 77
5.7 Conclusion .. 86

6 Conclusions and Future Scope 87
6.1 Conclusions .. 87
6.2 Future Scope .. 88
List of Figures

1.1 Types of digital image forgery techniques 4
1.2 Pixel based image forgery . 5
1.3 Copy-move(cloning)image forgery 6
1.4 Spliced image forgery . 7
1.5 Image forgery detection techniques 10
1.6 Block based image forgery detection techniques 11
2.1 (a) Original image (b) Doctored image (c) Results of Cloning forgery. 26
2.2 Horizontal and filtered horizontal projection profile depicts in figure 2.1(b). 26
2.3 Vertical and filtered vertical projection profile depicts in figure 2.1(b). 27
2.4 (a) Original image (b) Doctored image (c) Results of Cloning forgery. 27
2.5 Horizontal and filtered horizontal projection profile depicts in figure 2.4(b). 28
2.6 Vertical and filtered vertical projection profile depicts in figure 2.4(b). 28
2.7 (a) Original image (b) Doctored image (c) Results of Cloning forgery. 29
2.8 Horizontal and filtered horizontal projection profile depicts in figure 2.7(b).

2.9 Vertical and filtered vertical projection profile depicts in figure 2.7(b).

2.10 (a) Original image (b) Doctored image (c) Results of Cloning forgery.

2.11 Horizontal and filtered horizontal projection profile depicts in figure 2.10(b).

2.12 Vertical and filtered vertical projection profile depicts in figure 2.10(b).

2.13 (a) Original image (b) Doctored image (c) Results of Cloning forgery.

2.14 Horizontal and filtered horizontal projection profile depicts in figure 2.13(b).

2.15 Vertical and filtered vertical projection profile depicts in figure 2.13(b).

3.1 MFHWT decomposition

3.2 Concept of RPT template

3.3 (a) Real image, (b) Doctored image, (c) Cloning identification with CTR=2 and (d) Forgery detection with CTR=1.

3.4 Detection of identical object with a rotation attack (a) Real image, (b) Doctored image and (c) Cloning identification

3.5 Gaussian blurring (with mean = 0; σ = 0.01), Rotation with angle 180 degree and scale factor=120; (a) Real image, (b) Doctored image and (c) Cloning identification

3.6 Multi-paste forgery identification (a) Real image, (b) Doctored image and (c) Cloning detection

3.7 (a) Original image, (b) Doctored image, (c) Cloning detection
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.8</td>
<td>(a) Real image, (b) Doctored image, (c) Cloning detection</td>
</tr>
<tr>
<td>3.9</td>
<td>(a) Real image, (b) Doctored image, (c) Cloning detection</td>
</tr>
<tr>
<td>3.10</td>
<td>(a) Real image, (b) Doctored image, (c) Cloning detection</td>
</tr>
<tr>
<td>4.1</td>
<td>A non-uniform fuzzy partition of interval $[1, 4]$ by triangular membership functions.</td>
</tr>
<tr>
<td>4.2</td>
<td>Uniform fuzzy partition of interval $[1, 4]$ by sinusoidal membership functions.</td>
</tr>
<tr>
<td>4.3</td>
<td>Proposed model</td>
</tr>
<tr>
<td>4.4</td>
<td>(a) Real image, (b) Doctored image (c) Fuzzy Transform image and (d) Forgery detection</td>
</tr>
<tr>
<td>4.5</td>
<td>(a) Real image, (b) Doctored image (c) Fuzzy Transform image and (d) Forgery detection</td>
</tr>
<tr>
<td>4.6</td>
<td>Forgery detection on MICC-220 Database (a) Real image, (b) Forgery image (c) Fuzzy Transform image and (d) Forgery detection</td>
</tr>
<tr>
<td>4.7</td>
<td>Forgery detection on MICC-220 Database (a) Real image (b) Forgery image (c) Fuzzy Transform image and (d) Forgery detection</td>
</tr>
<tr>
<td>4.8</td>
<td>Forgery detection on MICC-220 Database (a) Real image (b) Forgery image (c) Fuzzy Transform image and (d) Forgery detection</td>
</tr>
<tr>
<td>5.1</td>
<td>IFLBP calculation scheme for a 3×3 pixel neighborhood. (a) Gray-levels of a 3×3 pixels neighborhood. (b) Intuitionistic Fuzzy threshold values along with membership as well as non-membership values. (c) Binomial weights matrix. (d) IFLBP codes and CIFLBP</td>
</tr>
<tr>
<td>5.2</td>
<td>Proposed model</td>
</tr>
</tbody>
</table>
5.3 Histograms Plot of IFLBP Codes for X-Ray Image 81
5.4 Histograms Plot of IFLBP Codes for Thyroid Image 82
5.5 Histograms Plot of IFLBP Codes for Brain CT-Scan Image 83
5.6 Histograms Plot of IFLBP Codes for Lena Image 84
5.7 Histograms Plot of IFLBP Codes for JUIT Logo 85
List of Tables

2.1 Execution Time (In seconds) Comparison with Existing Algorithm 33

3.1 Accuracy Results 50
3.2 Accuracy Comparison on Test Images 50
3.3 Feature Dimension Comparison with Existing Algorithm 50
3.4 Execution Time (In seconds) Comparison with Existing Algorithm 51

4.1 Accuracy Results 68
4.2 TPR, FPR and Execution Time Comparison for every Technique on MICC-F220 Database 68
4.3 Feature Dimension Comparison with Existing Algorithm 68

5.1 The Entropy Values at Different Threshold and Hesitation for X-Ray image 79
5.2 The Entropy Values at Different Threshold and Hesitation for Thyroid Image 79
5.3 The Entropy Values at Different Threshold and Hesitation for Brain CT Scan Image 79
5.4 The Entropy Values at Different Threshold and Hesitation for Lena Image .. 80
5.5 The Entropy Values at Different Threshold and Hesitation for JUIT Logo .. 80
Abstract

Digital images play an extensive role in our daily life as we are living in the digital and technical era. The images can be a personal or official and can also used as various important purposes such as evidence in court of law, a news item, financial record etc. Forge images are being used as original image to disguise and can be presented as false evidence. Furthermore, image processing softwares, editing tools and internet makes this process quite easy. Anyone can doctor the digital images without leaving visual clues. The activity of doctoring images is decreasing the trust-worthiness of digital images. Therefore, there is essential and effective algorithm which can detect image forgery automatically for authenticity or genuineness of the digital images.

The copy-move (cloning) is a very popular type of forgery which is used to create a digital image doctoring. In this approach, a specific block of image or object is copied and then pasted it to the other portion of the same image to accomplish information hiding. Additionally, the copied area move from the same image, its significant properties namely noise, texture and color palette will be well matched with the remaining part of the image. It will lead to a great remonstrance in identifying and locating the forgery regions.

Although various approaches have been proposed by number of researchers to detect copy-move image forgery (CMFD), still there are some research gaps such as false detection, high execution time and poor accuracy due to various forgery attacks. We have addressed all these issues in proposed algorithms, and new improvements have been suggested to enhance the accuracy as well as reduce the execution time.

This thesis has been divided into six chapters. Chapter 1 introduces the concept of image forgery, classification of forgery, important characteristics and various applications of image forgery. This is followed by a literature review of copy-move image forgery detection techniques along with their merits and demerits.
The method of copy-move image forgery along with major performance metrics namely Accuracy, True Positive Rate (TPR) and False Positive Rate (FPR) has been discussed. An identification of CMFD using image projection profiling with improved performance in accuracy and execution time is discussed in chapter 2.

Chapter 3 and 4 discuss robust and hybrid techniques with their performance in respect of accuracy, TPR, FPR, execution time, dimension reduction as well as after applying various attacks. We have also tested proposed algorithm on public database MICC-220. This database is having total 220 images. Total images are a combination of original image, copy-move forgery images and various attacks are also applied on forge images such as rotation, scaling, compression etc. Chapter 5 presents texture feature extraction method, which is used in various application areas of image processing. Finally, the summary of all work along with contribution and future scope are discussed in chapter 6 followed by list of publications and references at the end.