Table of Contents

List of Abbreviation i
Abstract i-vi

Chapter 1

Introduction 1-30
1.1 Nanoscience 1
1.2 II VI Semiconductor nanomaterials 2
1.3 Quantum confinement 3
1.4 Application of II VI semiconductor nanomaterials 7
1.5 Synthesis of nanomaterials 7
 1.5.1 Radiolytic synthesis 8
 1.5.2 A case system: CdSe 10
1.6 Radiation Chemistry 12
 1.6.1 Radiation chemistry of water 12
 1.6.2 Absorbed dose and radiation chemical yield 14
 1.6.3 Radical and molecular yield 15
 1.6.4 Properties of primary radicals 16
 1.6.5 Generation of secondary radicals 18
 1.6.6 Oxidizing conditions 18
 1.6.7 Reducing conditions 19
1.7 Photophysics of Molecules *vis a vis* Semiconductor Nanomaterials 20
1.8 Organization of Thesis 23
References 26
Chapter 2

Experimental

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Introduction</td>
<td>31</td>
</tr>
<tr>
<td>2.2</td>
<td>Cobalt 60 gamma source</td>
<td>31</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Dosimetry for cobalt 60 source</td>
<td>32</td>
</tr>
<tr>
<td>2.3</td>
<td>High energy electron beam</td>
<td>34</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Pulse radiolysis setup</td>
<td>34</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Electron gun</td>
<td>36</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Kinetic spectrophotometer</td>
<td>36</td>
</tr>
<tr>
<td>2.3.4</td>
<td>Transient absorption measurement</td>
<td>38</td>
</tr>
<tr>
<td>2.3.5</td>
<td>Dosimeter for pulse radiolysis</td>
<td>38</td>
</tr>
<tr>
<td>2.4</td>
<td>Experimental details</td>
<td>39</td>
</tr>
<tr>
<td>2.5</td>
<td>Characterization of nanoparticles</td>
<td>42</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Optical absorption spectroscopy</td>
<td>42</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Photoluminescence spectroscopy</td>
<td>43</td>
</tr>
<tr>
<td>2.5.3</td>
<td>X-ray diffraction</td>
<td>44</td>
</tr>
<tr>
<td>2.5.4</td>
<td>Transmission electron microscopy</td>
<td>46</td>
</tr>
<tr>
<td>2.5.5</td>
<td>Scanning electron microscopy</td>
<td>48</td>
</tr>
</tbody>
</table>

References | 49 |

Chapter 3

Radiolytic synthesis of CdSe nanoparticles in aqueous solution

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>51</td>
</tr>
<tr>
<td>3.2</td>
<td>Experimental</td>
<td>52</td>
</tr>
</tbody>
</table>
Chapter 4

Investigation of dynamics of radiolytic formation CdSe nanoparticles in aqueous solutions

4.1 Introduction
4.2 Experimental details
 4.2.1 Chemicals
 4.2.2 Pulse radiolysis
 4.2.3 Characterization
4.3 Results and discussion
 4.3.1 Pulse radiolysis studies of cadmium precursor
 4.3.2 Pulse radiolysis studies of selenium precursor
 4.3.3 Pulse radiolysis studies of both cadmium and selenium precursor
 4.3.4 Characterization of nanoparticles
4.4 Conclusion

References
Chapter 5

Radiolytic synthesis of CdSe nanoparticles in aqueous solutions: Effect of capping agent 94-114

5.1 Introduction 94

5.2 Experimental 96
 5.2.1 Synthesis 96
 5.2.2 Irradiation condition 96
 5.2.3 Characterization 97

5.3 Results and discussion 97
 5.3.1 Uncapped CdSe quantum dot 97
 5.3.2 Citric acid capped CdSe quantum dot 103

5.4 Conclusion 111

References 112

Chapter 6

Synthesis of CdSe nanoparticles in microemulsions 115-145

6.1 Introduction 115

6.2 Experimental 118
 6.2.1 Radiolytic synthesis 118
 6.2.2 Chemical synthesis 118
 6.2.3 Characterization 119

6.3 Results and discussion 119
 A) CdSe nanomaterial by electron beam irradiation 119
6.3.1 Optical absorption 119
6.3.2 Tuning of shape with different w₀ values 127
6.3.3 Photoluminescence studies 129

B) CdSe nanomaterial through chemical synthesis 138

6.4 Conclusion 141
References 143

Summary and Future Prospects 146
List of Publication 150