T. Mythili, M.Sc., M.Phil.,
Research Scholar,
Department of Plant Biology and Biotechnology,
Loyola College,
Chennai- 600 034.

DECLARATION

I declare that the thesis entitled “Pharmacognostic and Bioactivity Studies of the ‘Egyptian Pea’, Sesbania sesban (L.) Merr.” submitted by me for the degree of Doctor of Philosophy (Ph.D.,) is the record of research work carried out by me during the period from March 2009 to July 2014 under the guidance of Dr. R. Ravindhran, Associate Professor and Research Supervisor, Department of Plant Biology and Biotechnology, Loyola College (Autonomous), Chennai- 600 034, Tamil Nadu, and has not formed the basis for the award of any Degree, Diploma, Associateship, Fellowship, Titles in this University or any other University or other similar Institution of higher learning.

(T. Mythili)
CONTENTS

List of Tables
List of Figures
List of Plates
List of Abbreviations

1. **Introduction**
 1.1 Use of plants in Traditional medicine
 1.2 Use of plants in today’s world
 1.3 Status of Medicinal plants in India
 1.4 Pharmacognostic study of the plants
 1.5 Secondary metabolites
 1.6 Antimicrobial activities of plant substances
 1.7 Antioxidant activities of plant products
 1.8 Anti-proliferative activity of the plants
 1.9 Phylogenetetic Analysis
 1.10 Profile of the Medicinal plant *Sesbania sesban*
 1.11 Aim and Objectives of the study

2. **Review of literature**
 2.1 Pharmacognostic study of the plants
 2.2 Secondary metabolites
 2.3 Antimicrobial activity of plant substances
 2.4 Antioxidant activities of plant products
 2.5 Anti-proliferative activity of the plants
 2.6 Phylogenetetic study
 2.7 Profile of the Medicinal plant *Sesbania sesban*
3. **Material and methods**

3.1 **Collection of Material**

3.2 **Pharmacognostic study of *Sesbania sesban***

3.2.1 Organoleptic evaluation

3.2.2 Anatomical and SEM studies of *Sesbania sesban*

3.2.4 Histochemical and physicochemical study

3.2.8 Phytochemical study

3.3 **Characterization of the phytochemicals of *Sesbania sesban***

3.3.1 Chromatographic studies

3.3.3 Spectroscopic studies

3.3.8 Preparative Thin layer chromatography

3.3.9 Quantification of Quercetin

3.4 **Biological activities of the methanol extract of *Sesbania sesban* stem**

3.4.1 Antibacterial activity

3.4.2 Antifungal activity

3.4.3 Antioxidant activity

3.4.4 Anti-proliferation activity

3.5 **Phylogenetic analysis of *Sesbania sesban***

4. **Result**

4.1 **Pharmacognostic study of *Sesbania sesban***

4.1.1 Organoleptic evaluation

4.1.2 Anatomical studies of *Sesbania sesban*

4.1.3 SEM and EDAX studies of *Sesbania sesban*

4.1.4 Histochemical and physicochemical study of *Sesbania sesban*

4.1.8 Phytochemical study of *Sesbania sesban*
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2</td>
<td>Characterization of Phytochemicals of the methanol extract of Sesbania sesban</td>
<td>84</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Thin Layer Chromatography (TLC)</td>
<td>84</td>
</tr>
<tr>
<td>4.2.2</td>
<td>High performance thin layer chromatography (HPTLC) of the methanol extract of Sesbania sesban</td>
<td>84</td>
</tr>
<tr>
<td>4.2.3</td>
<td>UV-Vis spectrum profile of the methanol extract of Sesbania sesban</td>
<td>85</td>
</tr>
<tr>
<td>4.2.4</td>
<td>FTIR profile of the methanol extract of Sesbania sesban</td>
<td>85</td>
</tr>
<tr>
<td>4.2.5</td>
<td>HPLC of the methanol extract of Sesbania sesban stem</td>
<td>86</td>
</tr>
<tr>
<td>4.2.6</td>
<td>Gas Chromatography Mass Spectrometry (GC-MS) of the methanol extract of Sesbania sesban stem</td>
<td>86</td>
</tr>
<tr>
<td>4.2.7</td>
<td>LC-MS of the methanol extract of Sesbania sesban stem</td>
<td>87</td>
</tr>
<tr>
<td>4.2.8</td>
<td>Preparative TLC of the methanol extract of Sesbania sesban stem</td>
<td>87</td>
</tr>
<tr>
<td>4.2.9</td>
<td>Quantification of Quercetin through HPTLC method</td>
<td>89</td>
</tr>
<tr>
<td>4.3</td>
<td>Biological activities of Sesbania sesban stem</td>
<td>90</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Antibacterial activity of the methanol extract of Sesbania sesban stem</td>
<td>90</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Antifungal activity of the methanol extract of Sesbania sesban stem</td>
<td>91</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Antioxidant activity of the methanol extract of Sesbania sesban stem</td>
<td>91</td>
</tr>
<tr>
<td>4.3.4</td>
<td>Anti-proliferative activity of the methanol extract of Sesbania sesban stem</td>
<td>92</td>
</tr>
<tr>
<td>4.4</td>
<td>Phylogenetic analysis of Sesbania sesban</td>
<td>93</td>
</tr>
<tr>
<td>5.</td>
<td>Discussion</td>
<td>96</td>
</tr>
<tr>
<td>6.</td>
<td>Summary</td>
<td>134</td>
</tr>
<tr>
<td>7.</td>
<td>Conclusion</td>
<td>139</td>
</tr>
<tr>
<td>8.</td>
<td>References</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Appendix I – Certificate of Identification</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Appendix II – Publications</td>
<td></td>
</tr>
</tbody>
</table>
ACKNOWLEDGEMENT

I express my sincere gratitude to my guide Dr. R. Ravindran M.Sc., Ph.D., for allowing me to do research under his guidance. I take this as a special opportunity to thank him for his patience, continued support, guidance and encouragement for the successful completion of this research work.

My sincere gratitude is due to, Rev. Dr. G. Joseph Antony Samy, S.J, Principal, Loyola College, Chennai, for permitting me to carry out this research.

My sincere gratitude is also due to, Dr. M. Thavamani, Dr. Jothi Kumaravel, Retd. Principals, Dr. A. Nirmala, Principal, Ethiraj College for Women, Chennai, for granting me permission to do the research programme at Loyola college, Chennai.

I also wish to thank Dr. Antoine Lebel, L, HOD, Dept. of Plant Biology and Biotechnology, Loyola College, Chennai, for his encouragement.

My heartfelt thanks are due to Dr. Shyamala Kanagarajan, Retd. Vice-Principal and HOD, Dept. of Plant Biology and Plant Biotechnology, Ethiraj College for Women, for her support, continued encouragement and provision of the lab facilities.

I also thank Dr. Hema Balram, Dr. M. Prema, Retd. HODs and Mrs. Subbalakshmi Kesavan, Retd. Associate Professor, Dept. of Plant Biology and Plant Biotechnology, Ethiraj College for Women, for their encouragement.

I wish to thank Mrs. Prema Sampath Kumar, HOD, and Mrs. V. Manimozhi, Associate Professor, Dept. of Plant Biology and Plant Biotechnology, Ethiraj College for Women, for their support and encouragement.

I whole heartedly thank my Doctoral Committee members Dr. Jayasurya Kingsley, Director, Shift II, Madras Christian College, Chennai and Dr. S. Karpagam, Associate Professor, Dept. of Botany, Queen Mary’s College, Chennai for their valuable suggestions and encouragement.

I am grateful to my friends Mrs. R. Vijayalakshmi, Mrs. S. Girija, Dr. A. Subhashini for their encouragement and continued moral support throughout the research work.
I wish to thank Botanical Survey of India, Coimbatore, Plant Anatomy Research Centre, Chennai, Captain Srinivasa Murti Research Institute of Ayurveda and Siddha Drug Development, Chennai, Sophisticated Advanced Instrumentation Facility, IIT, Chennai, Ramachandra Innovis, Sri Ramachandra Medical Centre, Chennai, Sargam Labs, Chennai, SRM College, Dr. B.S Lakshmi, Assistant Professor Sr. Grade, Centre for Biotechnology, Anna University, Chennai, Instrumentation Centre, Ethiraj College for Women, Chennai, for the identification of the plant, slide preparation, pharmacognostical and in-vitro testing and the instrumentation facilities.

I deeply acknowledge the help from the entire faculty, technical and non-technical staff of the Dept. of Plant Biology and Plant Biotechnology, Ethiraj College for Women, Chennai.

I deeply thank all my family members for their continued moral support and help they extended to complete my research. I also thank one and all who have directly or indirectly helped me for the successful completion of this research work.
INTRODUCTION
REVIEW OF LITERATURE
MATERIALS AND METHODS
RESULT
DISCUSSION
SUMMARY
CONCLUSION
REFERENCES
APPENDIX I
APPENDIX II
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Organoleptic characters of stem of Sesbania sesban</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2</td>
<td>EDAX analysis of stem of Sesbania sesban</td>
</tr>
<tr>
<td>Table 3</td>
<td>Histochemical analysis of powdered stem of Sesbania sesban</td>
</tr>
<tr>
<td>Table 4</td>
<td>Physico-chemical studies of powdered stem of Sesbania sesban</td>
</tr>
<tr>
<td>Table 5</td>
<td>Fluorescence analysis of powdered stem of Sesbania sesban</td>
</tr>
<tr>
<td>Table 6</td>
<td>Yield of the extracts of leaf, stem and root of Sesbania sesban</td>
</tr>
<tr>
<td>Table 7</td>
<td>Qualitative Phytochemical analysis of Sesbania sesban</td>
</tr>
<tr>
<td>Table 8</td>
<td>Quantitative Determination of the Phytochemicals of methanol extract of Sesbania sesban</td>
</tr>
<tr>
<td>Table 9</td>
<td>Thin Layer Chromatography (TLC) profile of methanol extract of Sesbania sesban</td>
</tr>
<tr>
<td>Table 10</td>
<td>High Performance Thin Layer Chromatography (HPTLC) profile of methanol extract of Sesbania sesban</td>
</tr>
<tr>
<td>Table 11</td>
<td>UV-VIS spectrum profile of methanol extract of Sesbania sesban</td>
</tr>
<tr>
<td>Table 12</td>
<td>Fourier Transform Infrared spectrum (FTIR) profile of methanol extract of Sesbania sesban</td>
</tr>
<tr>
<td>Table 13</td>
<td>High Performance Liquid Chromatography (4µl) profile of methanol extract of stem of Sesbania sesban</td>
</tr>
<tr>
<td>Table 14</td>
<td>Gas Chromatography Mass Spectrometry (GCMS) profile of methanol extract of Sesbania sesban stem</td>
</tr>
<tr>
<td>Table 15</td>
<td>Liquid Chromatography Mass Spectrometry (LCMS) profile of methanol extract of Sesbania sesban stem</td>
</tr>
<tr>
<td>Table 16</td>
<td>Preparative TLC of methanol extract of Sesbania sesban stem</td>
</tr>
<tr>
<td>Table 17</td>
<td>Liquid Chromatography Mass Spectrometry (LC-MS) of compound 2</td>
</tr>
<tr>
<td>Table 18</td>
<td>Liquid Chromatography Mass Spectrometry (LC-MS) of Quercetin</td>
</tr>
</tbody>
</table>
Table 19 Fourier Transform Infrared spectrum (FTIR) of compound 3
Table 20 HPTLC data (standard - quercetin and sample - methanol extract of *Sesbania sesban* stem)
Table 21 HPTLC data for quantification of quercetin in the methanol extract of *Sesbania sesban* stem
Table 22 Antibacterial activity of methanol extract of *Sesbania sesban* stem (agar well diffusion method)
Table 23 Minimum Inhibitory Concentration (MIC) and Maximum Bactericidal Concentration (MBC) of methanol extract of *Sesbania sesban* stem on some selected bacterial strains
Table 24 Antifungal activity of methanol extract of *Sesbania sesban* stem (poison plate method)
Table 25 DPPH scavenging activity of methanol extract of *Sesbania sesban* stem
Table 26 Nitric oxide radical activity of methanol extract of *Sesbania sesban* stem
Table 27 Total phenol content and Fe²⁺ chelation activity of methanol extract of *Sesbania sesban* stem
Table 28 Reducing power and Superoxide radical scavenging activity of methanol extract of *Sesbania sesban* stem
Table 29 Effect of methanol extract of *Sesbania sesban* stem against human cancer (A-431, MCF-7 and HT-29) cell lines
Table 30 Effect of three compounds (S1, S2 and S3) on the cell line HT-29 human colorectal adenocarcinoma
LIST OF FIGURES

Figure 1 Scanning electron microscopy (SEM) energy dispersive X-ray (EDAX) spectrum presenting the chemical composition of *Sesbania sesban* stem

Figure 2 Quantitative determination of the phytochemicals of methanol extract of leaf, stem and root of *Sesbania sesban*

Figure 3 HPTLC- 3D Image of methanol extract of leaf, stem and root of *Sesbania sesban*

Figure 4 HPTLC of methanol extract of leaf of *Sesbania sesban* (10 µl)

Figure 5 HPTLC of methanol extract of stem of *Sesbania sesban* (10 µl)

Figure 6 HPTLC of methanol extract of root of *Sesbania sesban* (10 µl)

Figure 7 UV spectrum of methanol extract of leaf of *Sesbania sesban*

Figure 8 UV spectrum of methanol extract of stem of *Sesbania sesban*

Figure 9 UV spectrum of methanol extract of root of *Sesbania sesban*

Figure 10 FTIR spectrum of methanol extract of leaf of *Sesbania sesban*

Figure 11 FTIR spectrum of methanol extract of stem of *Sesbania sesban*

Figure 12 FTIR spectrum of methanol extract of root of *Sesbania sesban*

Figure 13 High Performance Liquid Chromatogram (4µl) of methanol extract of stem of *Sesbania sesban*

Figure 14 High Performance Liquid Chromatogram (15µl) of methanol extract of stem of *Sesbania sesban*

Figure 15 Gas Chromatography Mass Spectrum of methanol extract of stem of *Sesbania sesban*

Figure 16 Liquid Chromatography Mass Spectrum of methanol extract of stem of *Sesbania sesban*

Figure 17 UV spectrum of compound S1 of methanol extract of *Sesbania sesban* stem
Figure 18 FTIR spectrum of compound S1 of methanol extract of *Sesbania sesban* stem
Figure 19 GCMS of compound S1 of methanol extract of *Sesbania sesban* stem
Figure 20 Mass spectrum of compound S1 (piperine) of methanol extract of *Sesbania sesban* stem
Figure 21 UV spectrum of compound S2 of methanol extract of *Sesbania sesban* stem
Figure 22 FTIR spectrum of compound S2 of methanol extract of *Sesbania sesban* stem
Figure 23 LCMS of compound S2 of methanol extract of *Sesbania sesban* stem
Figure 24 LCMS of compound S2 (quercetin) of methanol extract of *Sesbania sesban* stem
Figure 25 UV spectrum of compound S3 of methanol extract of *Sesbania sesban* stem
Figure 26 FTIR spectrum of compound S3 of methanol extract of *Sesbania sesban* stem
Figure 27 GCMS of compound S3 of methanol extract of *Sesbania sesban* stem
Figure 28 Mass spectrum of compound S3 (n-hexadecanoic acid) of methanol extract of *Sesbania sesban* stem
Figure 29 Calibration curve of standard quercetin
Figure 30 Standard (quercetin) and Sample (methanol extract of stem of *Sesbania sesban*) peak comparison
Figure 31 Chromatogram of Standard Quercetin
Figure 32 Chromatogram of methanol extract of *Sesbania sesban* stem
Figure 33 DPPH radical scavenging assay of methanol extract of *Sesbania sesban* stem
Figure 34 Nitric oxide radical activity of methanol extract of *Sesbania sesban* stem
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>Phenol content of methanol extract of Sesbania sesban stem</td>
</tr>
<tr>
<td>36</td>
<td>Iron chelation assay of methanol extract of Sesbania sesban stem</td>
</tr>
<tr>
<td>37</td>
<td>Reducing power assay of methanol extract of Sesbania sesban stem</td>
</tr>
<tr>
<td>38</td>
<td>Superoxide radical scavenging assay of methanol extract of Sesbania sesban stem</td>
</tr>
<tr>
<td>39</td>
<td>Percentage growth of human cancer (A431, MCF-7 and HT-29) cell lines against crude methanol extract of Sesbania sesban stem</td>
</tr>
<tr>
<td>40</td>
<td>Percentage growth of human cancer HT-29 cell line against the compounds S1, S2 and S3 of Sesbania sesban</td>
</tr>
<tr>
<td>41</td>
<td>Phylogenetic tree of Sesbania sesban 5.8 S rRNA ribosomal gene sequence (SS58rRNA_20)</td>
</tr>
<tr>
<td>42</td>
<td>Phylogenetic tree of Sesbania sesban chloroplast rbcl gene sequence (SSrbcl_30)</td>
</tr>
</tbody>
</table>
LIST OF PLATES

Plate 1
Sesbania sesban (L.) Merr. plant

Plate 2
Sesbania sesban – plant parts

Plate 3
Sesbania sesban – T. S of Leaf

Plate 4
Sesbania sesban – T. S of Rachis

Plate 5
Sesbania sesban – T. S of Stem

Plate 6
Sesbania sesban – T. S of Root

Plate 7
Scanning Electron Micrographs of *Sesbania sesban* stem- entire view and portion enlarged

Plate 8
T.S of portion of *Sesbania sesban* stem showing the presence of phytochemicals when stained with different chemicals at X40

Plate 9
Powder characteristic of *Sesbania sesban* stem (40X)

Plate 10
Thin Layer Chromatogram (TLC) profile of methanol extract of *Sesbania sesban* at normal light, 254 and 366 nm

Plate 11
High performance thin layer chromatogram (HPTLC) profile of methanol extract of *Sesbania sesban* at 254 and 366 nm

Plate 12
Preparative TLC of methanol extract of *Sesbania sesban* stem at normal light and 254 nm

Plate 13
HPTLC profile (standard - quercetin and sample - methanol extract of *Sesbania sesban* stem) at 254 and 366 nm

Plate 14
Antibacterial activity of methanol extract of *Sesbania sesban* stem (agar well diffusion method)

Plate 15
Minimum Inhibitory Concentration (MIC) of methanol extract of *Sesbania sesban* stem

Plate 16
Maximum Bactericidal Concentration (MBC) of methanol extract of *Sesbania sesban* stem at 100 μg/ml

Plate 17
Antifungal activity of methanol extract of *Sesbania sesban* stem (poison plate method)
Plate 18 Anti-proliferative study of methanol extract of *Sesbania sesban* stem on cell line A-431 human skin cancer epidermoid carcinoma

Plate 19 Anti-proliferative study of methanol extract of *Sesbania sesban* stem on cell line MCF-7 human adenocarcinoma of breast

Plate 20 Anti-proliferative study of methanol extract of *Sesbania sesban* stem on cell line HT-29 human colorectal adenocarcinoma

Plate 21 HT-29 cell line treated with compound 1 (piperine) isolated from methanol extract of *Sesbania sesban* stem

Plate 22 HT-29 cell line treated with compound 2 (quercetin) isolated from methanol extract of *Sesbania sesban* stem

Plate 23 HT-29 cell line treated with compound 3 (n-hexadecanoic acid) isolated from methanol extract of *Sesbania sesban* stem
LIST OF ABBREVIATIONS

A-431 Human skin cancer epidermoid carcinoma
AOS Active Oxygen Species
ATCC American Type Culture Collection
BLAST Basic Local Alignment Search Tool
CAMP Cyclic Adenosine MonoPhosphate
CFU Colony-Forming Unit
DMEM Dulbecco's Modified Eagle's medium
DPPH 1,1-diphenyl-2-picryl hydrazyl
EDAX Energy Dispersive X-ray
EDTA Ethylenediaminetetraacetic acid
EF Extraction Factor
EMR Electromagnetic Radiation
FAA Formalin Aceto-Alcohol
FTIR Fourier Transform Infrared
GC-MS Gas Chromatography Mass Spectrometry
H2SO4 Sulphuric acid
HCl Hydrochloric acid
HPLC High Performance Liquid Chromatography
HPTLC High performance thin layer chromatography
HT-29 Human colorectal adenocarcinoma
IC50 Half-Maximal Inhibitory Concentration
IKI Iodine Potassium Iodide
ITS Internal Transcribed Spacers
IUCN International Union for Conservation of Nature and natural resources
K3Fe(CN)6 Potassium ferricyanide
KBr Potassium bromide
LC-MS Liquid Chromatography Mass Spectrometry
LD50 Half-Maximal Lethal dose concentration
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOD</td>
<td>Limit of detection</td>
</tr>
<tr>
<td>LPS</td>
<td>Lipopolysaccharide</td>
</tr>
<tr>
<td>MBC</td>
<td>Minimum Bactericidal Concentration</td>
</tr>
<tr>
<td>MCF-7</td>
<td>Human adenocarcinoma of breast</td>
</tr>
<tr>
<td>MIC</td>
<td>Minimum Inhibitory Concentration</td>
</tr>
<tr>
<td>MS</td>
<td>Mass-Spectroscopy</td>
</tr>
<tr>
<td>MTCC</td>
<td>Microbial Type Culture Collections</td>
</tr>
<tr>
<td>MTT</td>
<td>3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide</td>
</tr>
<tr>
<td>NBT</td>
<td>NitroBlue Tetrazolium</td>
</tr>
<tr>
<td>NCBI</td>
<td>National Centre for Biotechnology Information</td>
</tr>
<tr>
<td>NCCS</td>
<td>National Centre for Cell Science</td>
</tr>
<tr>
<td>NEDD</td>
<td>Naphthylethylene Diamine Dihydrochloride</td>
</tr>
<tr>
<td>NIST</td>
<td>National Institute of Standards and Technology</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear Magnetic Resonance</td>
</tr>
<tr>
<td>NTS</td>
<td>Non-Transcribed Spacer</td>
</tr>
<tr>
<td>rbcL</td>
<td>Ribulose- 1,5-bisphosphate carboxylase / oxygenase chloroplast gene</td>
</tr>
<tr>
<td>rDNA</td>
<td>Ribosomal DNA</td>
</tr>
<tr>
<td>Rf</td>
<td>Retention factor</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive Oxygen Species</td>
</tr>
<tr>
<td>rRNA</td>
<td>Ribosomal RNA</td>
</tr>
<tr>
<td>RUBISCO</td>
<td>Ribulose- 1,5-Bisphosphate carboxylase / oxygenase</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning electron microscopy</td>
</tr>
<tr>
<td>STZ</td>
<td>Streptozotocin</td>
</tr>
<tr>
<td>TBA</td>
<td>tert-butyl alcohol</td>
</tr>
<tr>
<td>TLC</td>
<td>Thin layer chromatography</td>
</tr>
<tr>
<td>Tris-HCl</td>
<td>Tris(hydroxymethyl)aminomethane hydrochloride</td>
</tr>
<tr>
<td>UV-Vis</td>
<td>Ultra Violet Visible light</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
</tbody>
</table>