LIST OF FIGURES

<table>
<thead>
<tr>
<th>Sl No.</th>
<th>Figure number</th>
<th>Name of the figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Figure 1.1.1</td>
<td>Comparative study of the initial deflection (\bar{w}_0) and total deflection (\bar{w}) for cubic variation with radius $a = 10$.</td>
</tr>
<tr>
<td>2.</td>
<td>Figure 1.1.2</td>
<td>Comparative study of the initial deflection (\bar{w}_0) and total deflection (\bar{w}) for cubic variation with radius $a = 15$.</td>
</tr>
<tr>
<td>3.</td>
<td>Figure 1.1.3</td>
<td>Bending moment \bar{M}_r of the circular plate for cubic variation with radius $a = 10$.</td>
</tr>
<tr>
<td>4.</td>
<td>Figure 1.1.4</td>
<td>Bending moment \bar{M}_r of the circular plate for cubic variation with radius $a = 15$.</td>
</tr>
<tr>
<td>5.</td>
<td>Figure 1.1.5</td>
<td>Bending moment \bar{M}_t of the circular plate for cubic variation with radius $a = 10$.</td>
</tr>
<tr>
<td>6.</td>
<td>Figure 1.1.6</td>
<td>Bending moment \bar{M}_t of the circular plate for cubic variation with radius $a = 15$.</td>
</tr>
<tr>
<td>7.</td>
<td>Figure 1.1.7</td>
<td>Comparative study of the initial deflection (\bar{w}_0) and total deflection (\bar{w}) for biquadratic variation with radius $a = 10$.</td>
</tr>
</tbody>
</table>
8. Figure 1.1.8 Comparative study of the initial deflection \(\bar{w}_0 \) and total deflection \(\bar{w} \) for biquadratic variation with radius \(a = 15 \).

9. Figure 1.1.9 Bending moment \(\bar{M}_r \) of the circular plate for biquadratic variation with radius \(a = 10 \).

10. Figure 1.1.10 Bending moment \(\bar{M}_r \) of the circular plate for biquadratic variation with radius \(a = 15 \).

11. Figure 1.1.11 Bending moment \(\bar{M}_t \) of the circular plate for biquadratic variation with radius \(a = 10 \).

12. Figure 1.1.12 Bending moment \(\bar{M}_t \) of the circular plate for biquadratic variation with radius \(a = 15 \).

13. Figure 1.2.1 Variation of \(\bar{w} \) with radial distance \(r \) and \(m \), for \(n = 0.1 \).

14. Figure 1.2.2 Variation of \(\bar{w} \) with radial distance \(r \) and \(n \), for \(m = 0.1 \).

15. Figure 1.2.3 Variation of \(\bar{M}_r \) with radial distance \(r \) and \(m \), for \(n = 0.1 \).

16. Figure 1.2.4 Variation of \(\bar{M}_r \) with radial distance \(r \) and \(n \), for \(m = 0.1 \).

17. Figure 1.2.5 Variation of \(\bar{M}_t \) with radial distance \(r \) and \(m \), for \(n = 0.1 \).

18. Figure 1.2.6 Variation of \(\bar{M}_t \) with radial distance \(r \) and \(n \), for \(m = 0.1 \).
19. Figure 2.1.1: Deflection of the clamped plate for
\[\alpha_1 = -0.25, \alpha_2 = -0.75. \]

20. Figure 2.1.2: Deflection of the simply supported plate for
\[\alpha_1 = -0.25, \alpha_2 = -0.75. \]

21. Figure 2.1.3: Deflection of the clamped plate for
\[\alpha_1 = -0.5, \alpha_2 = -0.5. \]

22. Figure 2.1.4: Deflection of the simply supported plate for
\[\alpha_1 = -0.5, \alpha_2 = -0.5. \]

23. Figure 2.1.5: Deflection of the clamped plate for
\[\alpha_1 = -0.75, \alpha_2 = -0.25. \]

24. Figure 2.1.6: Deflection of the simply supported plate for
\[\alpha_1 = -0.75, \alpha_2 = -0.25. \]

25. Figure 2.2.1: Variation of transverse deflection with \(X \) for
C-C rectangular plate when \(p + 4 \neq 0 \).

26. Figure 2.2.2: Variation of transverse deflection with \(X \) for
S-C rectangular plate when \(p + 4 \neq 0 \).

27. Figure 2.2.3: Variation of transverse deflection with \(X \) for
C-C rectangular plate when \(p + 4 = 0 \).

28. Figure 2.2.4: Variation of transverse deflection with \(X \) for
S-C rectangular plate when \(p + 4 = 0 \).

29. Figure 3.1.1: Variation of radial stress with radial
distance for \(\lambda_i = 1 \) and different \(\lambda_2 \).
30. Figure 3.1.2 Variation of hoop stress with radial distance for \(\lambda_1 = 1 \) and different \(\lambda_2 \).

31. Figure 3.1.3 Variation of radial stress with radial distance for \(\lambda_2 = 1 \) and different \(\lambda_1 \).

32. Figure 3.1.4 Variation of hoop stress with radial distance for \(\lambda_2 = 1 \) and different \(\lambda_1 \).

33. Figure 3.2.1 Radial stress for the annular disc with \(l=1, m=1, n=-1 \).

34. Figure 3.2.2 Radial stress for the annular disc with \(k=1, m=1, n=-1 \).

35. Figure 3.2.3 Radial stress for the annular disc with \(l=1, k=1, n=-1 \).

36. Figure 3.2.4 Radial stress for the annular disc with \(l=1, k=1, m=1 \).

37. Figure 3.2.5 Hoop stress for the annular disc with \(l=1, m=1, n=-1 \).

38. Figure 3.2.6 Hoop stress for the annular disc with \(k=1, m=1, n=-1 \).

39. Figure 3.2.7 Hoop stress for the annular disc with \(k=1, l=1, n=-1 \).

40. Figure 3.2.8 Hoop stress for the annular disc with \(k=1, l=1, m=1 \).

41. Figure 4.1.1 Variation of angular velocity \(\left(\frac{\omega^2 R_0}{\sigma_0} \right) \) with radii ration for \(m=1 \) and different \(n \).
42. Figure 4.1.2 Variation of angular velocity \(\omega^2 \rho_0 / \sigma_0\) with radii ration for \(n=1\) and different \(m\).

43. Figure 4.2.1 Variation of angular velocity \(\omega^2 \rho_0 / \sigma_0\) with radii ration for \(m = 1\) and different \(n\).

44. Figure 4.2.2 Variation of angular velocity \(\omega^2 \rho_0 / \sigma_0\) with radii ration for \(n = 1\) and different \(m\).

45. Figure 5.1.1 A 7-layers plywood shell.

46. Figure 5.1.2 A cylindrical shell subjected simultaneously to three simple loads

47. Figure 5.1.3 Buckling diagram for a 5-layers cylindrical shell for \(\lambda=20\).

48. Figure 5.1.4 Buckling diagram of a 5-layers cylindrical shell for \(\lambda=30\).

49. Figure 5.2.1 Circular cylindrical Shell with shear load.

50. Figure 5.2.2 The comparison of critical load in the direction of the grain and in the cross grain direction for different layers.