Chapter 1
GENERAL INTRODUCTION, REVIEW AND ORGANIZATION OF THE THESIS

1.1. Waterborne diseases and drinking water .. 1
1.2. Opportunistic, obligate and emergent bacterial pathogens 2
1.3. Definitions and historical perspectives of biofilms 4
1.4. Various stages of the bacterial biofilm formation 5
1.5. How do these bacteria communicate in the biofilm? 7
1.6. The advantages of biofilm life style, which makes the bacteria strong . 9
1.7. The role of extracellular polysaccharides in a biofilm 10
1.8. Bacterial pathogens in drinking water associated with biofilms 12
1.9. Coliforms and its relevance to biofilm in drinking water 18
1.10. Impacts of the bacterial biofilm in drinking water, food and medical environments ... 20
1.11. Packaged drinking water and heterotrophic plate count 22
1.12. Research gaps and conclusion .. 24
1.13. Significance of the study ... 26
1.14. Objectives of the study ... 27
1.15. Road map to the thesis ... 27

Chapter 2
OCCURRENCE, EXTENDED SURVIVAL AND RISK ASSESSMENT OF BIOFILM ASSOCIATED BACTERIA IN DRINKING WATER MICRO COSMS UNDER PROLONGED STORAGE CONDITIONS

2.1. Introduction ... 29
2.2. Specific objectives .. 32
2.3. Materials and methods ... 33
 2.3.1. Collection of samples ... 33
 2.3.2. The experimental set up ... 33
 2.3.3. Enumeration of BAB ... 34
 2.3.4. Characterization of BAB ... 35
 2.3.5. Nutrient analysis ... 35
<table>
<thead>
<tr>
<th>2.5.2. Bacterial genera characterized from the drinking water microcosms</th>
<th>72</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5.3. Heterotrophic plate count and virulence</td>
<td>74</td>
</tr>
<tr>
<td>2.5.4. Antibiotic resistance of bacterial isolates from various drinking water microcosms</td>
<td>76</td>
</tr>
<tr>
<td>2.6. Conclusions</td>
<td>80</td>
</tr>
</tbody>
</table>

Chapter 3

BACTERIOLOGICAL QUALITY OF PACKAGED DRINKING WATER MARKETED IN KERALA, SOUTH INDIA: AN INSIGHT INTO ATTACHED LIFE IN THE BOTTLES

<table>
<thead>
<tr>
<th>3.1. Introduction</th>
<th>82</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2. Specific objectives</td>
<td>84</td>
</tr>
<tr>
<td>3.3. Materials and methods</td>
<td>86</td>
</tr>
<tr>
<td>3.3.1. Collection of water samples</td>
<td>86</td>
</tr>
<tr>
<td>3.3.2. Determination of heterotrophic plate count</td>
<td>86</td>
</tr>
<tr>
<td>3.3.3. Enumeration of total coliforms, faecal coliforms and faecal streptococci</td>
<td>86</td>
</tr>
<tr>
<td>3.3.4. Enumeration of biofilm associated bacteria from packaged drinking water bottles</td>
<td>87</td>
</tr>
<tr>
<td>3.3.5. Analysis of nutrients, pH, turbidity and conductivity</td>
<td>87</td>
</tr>
<tr>
<td>3.3.6. Statistical analysis</td>
<td>88</td>
</tr>
<tr>
<td>3.4. Results and discussions</td>
<td>89</td>
</tr>
<tr>
<td>3.5. Conclusions</td>
<td>109</td>
</tr>
</tbody>
</table>

Chapter 4

POTENTIALLY PATHOGENIC FEATURES OF THE BIOFILM ASSOCIATED HETEROTROPHIC PLATE COUNT BACTERIA ISOLATED FROM THE PACKAGED DRINKING WATER

<table>
<thead>
<tr>
<th>4.1. Introduction</th>
<th>110</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2. Specific objectives</td>
<td>113</td>
</tr>
<tr>
<td>4.3. Materials and methods</td>
<td>114</td>
</tr>
<tr>
<td>4.3.1. Isolation of HPC bacteria</td>
<td>114</td>
</tr>
<tr>
<td>4.3.2. Beta haemolysis assay</td>
<td>114</td>
</tr>
<tr>
<td>4.3.3. Multiple antibiotic resistance indexing of the BAB in PDW</td>
<td>114</td>
</tr>
<tr>
<td>4.3.4. Extracellular enzyme profiling</td>
<td>116</td>
</tr>
<tr>
<td>4.3.4.1. Coagulase</td>
<td>116</td>
</tr>
</tbody>
</table>
Chapter 4

4.3.4.2. DNase
4.3.4.3. Gelatinase
4.3.4.4. Lecithinase
4.3.4.5. Lipase
4.3.4.6. Proteinase
4.3.4.7. Pyocyanin
4.3.4.8. Fluorescein

4.4. Results and discussion
4.4.1. Antibiotic resistance of the BAB isolated from the PDW samples
4.4.2. Capability of the isolated BAB to lyse the RBC
4.4.3. Production of extracellular enzymes by the isolated BAB
4.4.4. Percentage of the biofilm associated bacteria contributing all the three virulent features tested

4.5. Conclusions

Chapter 5

BIOFILM PRODUCTION, QUANTIFICATION AND MOLECULAR IDENTIFICATION OF SELECTED BIOFILM ASSOCIATED BACTERIA WITH VIRULENCE FEATURES

5.1. Introduction
5.2. Specific objectives
5.3. Materials and methods
5.3.1. Phenotypic analysis for slime production by congo red agar (CRA) method
5.3.2. Quantification of biofilm by microtiter plate (MTP) method
5.3.3. Molecular characterization of the selected BAB
5.3.3.1. Isolation of genomic DNA
5.3.3.2. 16S rRNA gene amplification by PCR
5.3.4. Statistical analysis
5.4. Results
5.4.1. Phenotypic analysis for slime production by CRA method
5.4.2. Quantification of biofilm by MTP method
5.4.3. Sensitivity, specificity, PPV, NPV and accuracy of CRA method

Contents
6.4.10. Survival of *S. enterica* in the biofilms of non-chlorinated MDWS’s………………………………………………………………… 177

6.4.11. Survival of *S. enterica* in the bulk water of non-chlorinated MDWS’s……………………………………………………………… 179

6.4.12. Comparison of the survival of *S. enterica* in the biofilms and bulk water of non-chlorinated MDWS’s………………………… 180

6.4.13. Survival of *S. enterica* in the biofilms of chlorinated MDWS’s………………………………………………………………… 181

6.4.14. Survival of *S. enterica* in the bulk water of chlorinated MDWS’s………………………………………………………………… 182

6.4.15. Comparison of the survival of *S. enterica* in the biofilms and bulk water of chlorinated MDWS’s………………………… 183

6.4.16. Comparison of the survival of *S. enterica* in the biofilms of non-chlorinated and chlorinated MDWS’s………………… 184

6.4.17. Comparison of the survival of *S. enterica* in the bulk water of non-chlorinated and chlorinated MDWS’s……………… 185

6.4.18. Comparison of the survival of the *E. coli* and *S. enterica* in the MDWS’s………………………………………………………… 186

6.4.19. Concentration of residual chlorine in the distribution systems……… 189

6.4.20. Scanning electron microscopic observations……… 189

6.5. Discussion………………………………………………………… 194

6.6. Conclusions………………………………………………………… 200

Chapter 7

SUMMARY AND CONCLUSIONS…………………………………… 202

BIBLIOGRAPHY……………………………………………………………… 211

APPENDIX………………………………………………………………… 264

AWARDS/HONORS/PUBLICATIONS………………………………… 283

Contents