List of Tables

Table 1.1. Relation between wavelength of visible light and color.

Table 1.2. Oxidation potential of various oxidizing agents.

Table 2a.1. Effect of HP concentration on decolorization of Calcon: [Calcon] = 0.05 mM; pH 3; UV intensity = 1260 μW cm⁻²; Exposure time = 240 min.

Table 2a.2. Decolorization of Calcon in the presence and absence of HP at different pH: [Calcon] = 0.05 mM; [HP] = 0.35 mM; UV intensity = 1260 μW cm⁻².

Table 2a.3. Effect of pH and UV intensity on decolorization of Calcon: [Calcon] = 0.05 mM; [HP] = 0.35 mM; Exposure time = 240 min.

Table 2a.4. Effect of scavengers on decolorization of Calcon: [Calcon] = 0.05 mM; [HP] = 0.35 mM; pH 1; Exposure time = 60 min; UV intensity = 1260 μW cm⁻².

Table 2a.5. Effect of dye concentration on decolorization of Calcon: [HP] = 0.35 mM; pH 3; UV intensity = 1260 μW cm⁻².

Table 2a.6. Dependence of decolorization and mineralization of Calcon on pH and UV intensity: [Calcon] = 0.05 mM; [HP] = 0.35 mM.

Table 2b.1. Optimization of HP and APS concentration for decolorization of Calcon: [Calcon] = 0.05 mM; pH 1; Irradiation time = 120 min (for HP) and 90 min (for APS); UV intensity = 213 μW cm⁻².
Table 2b.2. Effect of pH and oxidant on the decolorization of Calcon: [Calcon] = 0.05 mM; [oxidant] = 0.35 mM; light intensity = 213 µW cm\(^{-2}\). *(The values in the parentheses indicate mineralization under the specified conditions).*

Table 2b.3. Dependence of mineralization on pH: [Calcon] = 0.05 mM; [oxidant] = 0.35 mM; UV intensity = 213 µW cm\(^{-2}\); Irradiation time = 120 min.

Table 2b.4. Comparison of inhibiting effect of inorganic anions on the decolorization and mineralization of Calcon in UV/oxidant systems: [Calcon] = 0.05 mM; pH 1; [oxidant] = 0.35 mM; UV intensity = 213 µW cm\(^{-2}\); Irradiation time = 30 min.

Table 2b.5. Effect of UV intensity on the mineralization of Calcon by different UV/oxidant systems: [Calcon] = 0.05 mM; pH 1; [oxidant] = 0.35 mM.

Table 2b.6. Detoxification efficiency of UV/oxidant systems: [Oxidant] = 0.35 mM, Inoculum *(E. coli)* = 50 µL; [Calcon] = 0.05 mM; UV intensity = 213 µW cm\(^{-2}\); pH 1 (treatment).

Table 3.1. Effect of oxidant concentration on decolorization and mineralization of Calcon: [Calcon] = 0.05 mM; [Fe\(^{2+}\)] = 0.05 mM; pH 1 (APS); pH 3 (HP).

Table 3.2. Effect of Fe\(^{2+}\) concentration on decolorization and mineralization of Calcon: [Calcon] = 0.05 mM; [APS] = 0.35 mM; pH 1.

Table 3.3. Comparison of decolorization and mineralization of Calcon at different pHs in different M\(^{n+}\)/HP systems: [Calcon] = 0.05 mM; [M\(^{n+}\)] = 0.05 mM; [HP] = 0.35 mM; time = 120 min.
Table 3.4. Comparison of decolorization and mineralization of Calcon at different pHs in different Mn+/APS systems: [Calcon] = 0.05 mM; [Mn+] = 0.05 mM; [APS] = 0.35 mM; time = 120 min.

Table 3.5. Effect of pH on the biotoxicity of the treated solutions: [Calcon] = 0.05 mM; [Mn+] = 0.05 mM; [APS] = 0.35 mM; pH 1 (treatment); treatment period = 30 min. CFU: Control at pH 7 = (144 for Fe2+/APS) & (137 for Ag+/APS); Untreated dye = (56 for Fe2+/APS) and (51 for Ag+/APS).

Table 4.1. Comparison of mineralization of Calcon in Photo-Fenton (Fe2+/HP/UV) and photo-Fenton-like (Mn+/oxidant/UV) processes at different pH: [Calcon] = 0.05 mM; [Mn+] = 0.05 mM; [oxidant] = 0.35 mM; UV intensity = 213 μW cm-2.

Table 4.2. Comparison of mineralization of Calcon by various processes: [Calcon] = 0.05 mM; [Mn+] = 0.05 mM; [oxidant] = 0.35 mM; UV\textsubscript{254} intensity = 213 μW cm-2; treatment period = 120 min.

Table 4.3. Variation of mineralization and EE/O with UV intensity and exposure period in Fe2+/oxidant/UV System: [Calcon] = 0.05 mM; [Fe2+] = 0.05 mM; [oxidant] = 0.35 mM.

Table 4.4. Variation of mineralization and EE/O with UV intensity and exposure period in Ag+/oxidant/UV System: [Calcon] = 0.05 mM; [Ag+] = 0.05 mM; [oxidant] = 0.35 mM.

Table 4.5. Effect of simultaneous variation of Fe2+ and HP concentration on mineralization, EE/O and E. coli growth (CFU): [Calcon] = 0.05 mM; UV intensity = 1417 μW cm-2; treatment period = 60 min; pH of treatment = 3; CFU = 217 (Control) and 172 (untreated dye).
Table 4.6. Effect of simultaneous variation of Fe$^{2+}$ and HP concentration on mineralization, EE/O and *E. coli* growth (CFU): [Calcon] = 0.05 mM; UV intensity = 1064 µW cm$^{-2}$; treatment period = 60 min; pH of treatment = 5.78; CFU = 217 (Control) and 172 (untreated dye).

Table 4.7. Effect of simultaneous variation of Fe$^{2+}$ and APS concentration on mineralization, EE/O and *E. coli* growth (CFU): [Calcon] = 0.05 mM; UV intensity = 1417 µW cm$^{-2}$; treatment period = 30 min; pH of treatment = 3; CFU = 217 (Control) and 172 (untreated dye).

Table 4.8. Effect of simultaneous variation of Fe$^{2+}$ and APS concentration on mineralization, EE/O and *E. coli* growth (CFU): [Calcon] = 0.05 mM; UV intensity = 1417 µW cm$^{-2}$; treatment period = 90 min; pH of treatment = 5.78; CFU = 217 (Control) and 172 (untreated dye).

Table 4.9. Effect of simultaneous variation of Ag$^{+}$ and HP concentration on mineralization, EE/O and *E. coli* growth (CFU): [Calcon] = 0.05 mM; UV intensity = 1755 µW cm$^{-2}$; treatment period = 60 min; pH of treatment = 3; CFU = 217 (Control) and 172 (untreated dye).

Table 4.10. Effect of simultaneous variation of Ag$^{+}$ and APS concentration on mineralization, EE/O and *E. coli* growth (CFU): [Calcon] = 0.05 mM; UV intensity = 1755 µW cm$^{-2}$; treatment period = 60 min; pH of treatment = 3; CFU = 217 (Control) and 172 (untreated dye).

Table 5.1. Optimization of oxidants: [CCA] = 0.05 mM; UV intensity = 213 µW cm$^{-2}$; Treatment time = 120 min; pH 1.

Table 5.2. Effect of oxidants on the decolorization and mineralization of CCA: [CCA] = 0.05 mM; [Oxidant] = 0.45 mM; UV intensity = 213 µW cm$^{-2}$; pH 1.
List of Tables

Table 5.3. Effect of pH on decolorization of CCA at different time period: [CCA] = 0.05 mM; [HP] = 0.45 mM; UV intensity = 213 μW cm⁻².

Table 5.4. Effect of pH on the decolorization and mineralization of CCA: [CCA] = 0.05 mM; [Oxidant] = 0.45 mM; UV intensity = 213 μW cm⁻²; exposure time = 120 min.

Table 5.5. Variation of mineralization and EE/O with UV intensity and exposure period in UV/Oxidant System: [CCA] = 0.05 mM; [Oxidant] = 0.45 mM; pH 1.

Table 5.6. Effect of pH on E. coli growth: [CCA] = 0.05 mM; [oxidant] = 0.45 mM; UV intensity = 213 μW cm⁻²; treatment time = 120 min; Inoculum = 100 μL; treatment pH = 1. CFU: Control = 228 (pH 7); Untreated dye solution = 143 (pH 4.83).

Table 5.7. Detoxification efficiency of UV/oxidant systems: [CCA] = 0.05 mM; [oxidant] = 0.45 mM; Inoculum (E. coli) = 100 μL; pH of treatment = 1; pH of E. coli growth = 7. CFU (control) = 228; CFU (pure dye solution) = 143.

Table 6.1. Effect of oxidant concentration on the decolorization and mineralization of CCA in Fe²⁺/oxidant system: [CCA] = 0.05 mM; [Fe²⁺] = 0.05 mM; pH 1.

Table 6.2. Effect of Fe²⁺ concentration on the decolorization and mineralization of CCA: [CCA] = 0.05 mM; [HP] = 0.55 mM; pH 1.

Table 6.3. Effect of pH on decolorization and mineralization of CCA in different Mⁿ⁺/oxidant systems: [CCA] = 0.05 mM; [Mⁿ⁺] = 0.05 mM; [HP] = 0.55 mM; [APS] = 0.45 mM; treatment period = 120 min.
Table 6.4. Effect of pH of the post treated solution on \(E. \ coli \) growth: \([\text{CCA}] = 0.05 \text{ mM}; [\text{M}^{n+}] = 0.05 \text{ mM}; [\text{HP}] = 0.55 \text{ mM}; [\text{APS}] = 0.45 \text{ mM}; \text{pH } 1 \) (treatment); treatment time = 120 min; Inoculum = 100 \(\mu \)L. CFU: Control = 228 (pH 7); Untreated dye solution = 143 (pH 4.83).

Table 7.1. Effect of pH on decolorization and mineralization in \(\text{Fe}^{2+}/\text{oxidant/UV} \) system: \([\text{CCA}] = 0.05 \text{ mM}; [\text{Fe}^{2+}] = 0.05 \text{ mM}; [\text{oxidant}] = 0.45 \text{ mM}; \text{UV intensity} = 213 \text{ } \mu \text{W cm}^{-2} \).

Table 7.2. Effect of pH on decolorization and mineralization \(\text{Ag}^{+}/\text{oxidant/UV} \) system: \([\text{CCA}] = 0.05 \text{ mM}; [\text{Ag}^{+}] = 0.05 \text{ mM}; [\text{oxidant}] = 0.45 \text{ mM}; \text{UV intensity} = 213 \text{ } \mu \text{W cm}^{-2} \).

Table 7.3. Effect of UV intensity and exposure period on mineralization and EE/O in \(\text{Fe}^{2+}/\text{oxidant/UV} \) System: \([\text{CCA}] = 0.05 \text{ mM}; [\text{Fe}^{2+}] = 0.05 \text{ mM}; [\text{oxidant}] = 0.45 \text{ mM} \).

Table 7.4. Effect of UV intensity and exposure period on mineralization and EE/O in \(\text{Ag}^{+}/\text{oxidant/UV} \) System: \([\text{CCA}] = 0.05 \text{ mM}; [\text{Ag}^{+}] = 0.05 \text{ mM}; [\text{oxidant}] = 0.45 \text{ mM} \).

Table 7.5. Effect of simultaneous variation of \(\text{Fe}^{2+} \) and HP concentration on mineralization, EE/O and \(E. \ coli \) growth (CFU) at pH 3: \([\text{CCA}] = 0.05 \text{ mM}; \text{UV intensity} = 1417 \text{ } \mu \text{W cm}^{-2}; \text{treatment time} = 120 \text{ min}. \text{CFU: Control} = 228; \text{Untreated dye solution} = 143 \).

Table 7.6. Effect of simultaneous variation of \(\text{Fe}^{2+} \) and HP concentration on mineralization, EE/O and \(E. \ coli \) growth (CFU) at pH 4.83: \([\text{CCA}] = 0.05 \text{ mM}; \text{UV intensity} = 1755 \text{ } \mu \text{W cm}^{-2}; \text{treatment time} = 120 \text{ min}. \text{CFU: Control} = 228; \text{Untreated dye solution} = 143 \).
Table 7.7. Effect of simultaneous variation of Fe$^{2+}$ and APS concentration on mineralization, EE/O and *E. coli* growth (CFU) at pH 3: [CCA] = 0.05 mM; UV intensity = 1417 µW cm$^{-2}$; treatment time = 90 min. CFU: Control = 228; Untreated dye solution = 143.

Table 7.8. Effect of simultaneous variation of Fe$^{2+}$ and APS concentration on mineralization, EE/O and *E. coli* growth (CFU) at pH 4.83: [CCA] = 0.05 mM; UV intensity = 1417 µW cm$^{-2}$; treatment time = 120 min. CFU: Control = 228; Untreated dye solution = 143.

Table 7.9. Effect of simultaneous variation of Ag$^+$ and HP concentration on mineralization, EE/O and *E. coli* growth (CFU) at pH 3: [CCA] = 0.05 mM; UV intensity = 1755 µW cm$^{-2}$; treatment time = 120 min. CFU: Control = 228; Untreated dye solution = 143.

Table 7.10. Effect of simultaneous variation of Ag$^+$ and HP concentration on mineralization, EE/O and *E. coli* growth (CFU) at pH 4.83: [CCA] = 0.05 mM; UV intensity = 1755 µW cm$^{-2}$; treatment time = 120 min. CFU: Control = 228; Untreated dye solution = 143.

Table 7.11. Effect of simultaneous variation of Ag$^+$ and APS concentration on mineralization, EE/O and *E. coli* growth (CFU) at pH 3: [CCA] = 0.05 mM; UV intensity = 1755 µW cm$^{-2}$; treatment time = 90 min. CFU: Control = 228; Untreated dye solution = 143.

Table 7.12. Effect of simultaneous variation of Ag$^+$ and APS concentration on mineralization, EE/O and *E. coli* growth (CFU) at pH 4.83: [CCA] = 0.05 mM; UV intensity = 1755 µW cm$^{-2}$; treatment time = 90 min. CFU: Control = 228; Untreated dye solution = 143.