List of Figures

Figure 1.1 Structural diversity of capsaicinoids

Figure 1.2 Capsaicin biosynthetic pathway in Capsicum showing the principal enzymes and intermediates.

Figure 3.1 (a) Locational map of sampling area (Rüzaphema Village, Nagaland). (b) Capsicum chinense grown in field.

Figure 3.2 Chromatographic separation of capsaicin. (a) TLC plate visualized after iodine vapour exposure. (b) HPLC chromatogram of standard capsaicin and dihydrocapsaicin. (c) HPLC chromatogram showing capsaicin and dihydrocapsaicin in sample.

Figure 3.3 (a) Induction of callus from hypocotyl explants. (b) Proliferation of callus in MS medium fortified with 2,4-D (2mg/l) and KN (0.5 mg/l) (SM). (c) Cell suspension cultures in SM. (d) Cell cultures on rotary shaker (125 rpm). (d) Time profile of the cell growth of C. chinense in cell suspension cultures.

Figure 3.4 Morphology of C. chinense cells at different stages. Cells at exponential growth phase; rapid cellular division observed with smaller cells (a, d). Cells at stationary growth phase; cellular size increase (b, e). Cells at late stationary growth phase; cellular autolysis and remaining cell debris observed (c, f).

Figure 3.5 (a) Time course of capsaicin biosynthesis in a batch cultures with respect to Fresh Cell Weight (μg g⁻¹ f.wt). (b) Time profile of cell viability percentage in a batch cultures of 0-25 day culture period.
Figure 5.1 (a) Callus tissue of *C. chinense* growing in SM (Bar =1 cm). (b) Cell suspension cultures of *C. chinense* in SM (Bar =1 cm). Light micrograph (400X) of *C. chinense* cells under different osmotic stress; (c) Control (SM), (d) SM+40 mM NaCl, (e) SM+80 mM NaCl, (f) SM+160 mM NaCl.

Figure 5.2 Chromatographic separation of capsaicin; (a) Chromatogram visualized prior to iodine vapour exposure, capsaicin spot not visible, (b) chromatographic spots (Indicated with arrow mark) visualized after being exposed to iodine vapour, standard spot (1), crude extract from ripen fruit (2), crude extract from callus tissue (3). Mobile phase: Benzene: Ethyl acetate: methanol (75:20:5). HPLC chromatogram in methanol of standard (c) and sample (d) showing capsaicin and dihydrocapsaicin at 280 nm.

Figure 5.3 Accumulation of capsaicin under various treatments of sucrose in cell cultures of *C. chinense* ; (a) Effect of sucrose on capsaicin production in suspension cultures, (b) effect of sucrose on capsaicin production in immobilized cell cultures. Values are means of triplicate with standard error.

Figure 5.4 Accumulation of capsaicin under various treatments of mannitol in cell cultures of *C. chinense* ; (a) Effect of mannitol on capsaicin production in suspension cultures, (b) effect of mannitol on capsaicin production in immobilized cell cultures. Values are means of triplicate with standard error.
Figure 5.5 Accumulation of capsaicin under various treatments of NaCl in combination with sucrose in cell cultures of *C. chinense*; (a) effect of the combination of sucrose and NaCl on capsaicin production in suspension cultures. (b) effect of the combination of sucrose and NaCl on capsaicin production in immobilized cell cultures. Values are means of triplicate with standard error.

Figure 7.1 Effect of 6-benzylaminopurine and thidiazuron on shoot induction from nodal explants (a), shoot tips (b) and bud forming capacity from shoot tip (c & d), nodal explants (e & f) of *C. chinense* in MS medium.

Figure 7.2 *In vitro* regeneration in *C. chinense*. (a) Shoot induction from nodal explants in MS +18.16 µM TDZ after 5 wk (Bar = 1 cm) (b). Shoot induction from shoot tip explants in MS +18.16 µM TDZ after 5 wk (Bar = 1cm). (c) Elongated plantlets of regenerated shoots (Bar = 1cm). (d) Rooting of *in vitro* regenerated shoots after 3 weeks of culture (Bar = 1cm). (e) Regenerated hardened plantlets (Bar = 3cm). (f) Regenerated plantlet transferred to earthen pot (Bar = 4cm). (g) Regenerated plantlets bearing healthy fruit.

Figure 7.3 Adventitious bud formation and plantlets regeneration in *C. chinense*. (a) Bud like structure (BLS) (Bar= 0.5cm). (b) BLS forming Rosette like structure (RLS) (Bar= 0.5cm). (c) RLS with few elongated shoots (Bar= 0.5cm). (d) Formation of Globular like structure (GLS) (Bar= 0.5cm). (e) A cluster of GLS turning to RLS (Bar= 0.5cm). (f)
RLS with no elongated shoots (Bar= 0.5cm). (g) Development of multiple shoots, shoot elongation and root development of plantlets (Bar= 1cm). (h) Elongated plantlets transferred to MS basal medium for further growth and development (Bar= 1cm). (i) Regenerated hardened plantlets grown in earthen pot containing soil and cow dung manure (1:1) Bar= 4cm). (j) Swelling of tissue in MS + 8.8 µM BAP and 5.6 µM Put (Bar= 1cm). (k) Initiation of rosette formation in MS+ 36.32 µM TDZ and 1.13 µM Put (Bar= 1cm). (l) Rosette formation in MS+ 36.32 µM TDZ and 1.13 µM Put (Bar= 1cm). (m) Multiple shoot formation in MS + 4.54 µM TDZ and 5.6 µM Put (Bar= 1cm) after 6 weeks of culture.

Figure 7.4 Effect of thiadiazuron and putrescine on shoot induction from cotyledon segments of *C. chinense* in MS medium. Data scored after 6 weeks of culture. Tukey’s post-hoc test shows means that are not significantly different grouped by the same letter. Rosette like structures (+ = Low, ++ = Medium, +++ = High), S = Swelling.

Figure 7.5 Effect of 6-benzylaminopurine and putrescine on shoot induction from cotyledon segments of *C. chinense* in MS medium. Data scored after 6 weeks of culture. Tukey’s post-hoc test shows means that are not significantly different grouped by the same letter. Rosette like structures (+ = Low, ++ = Medium, +++ = High), S = Swelling.
Figure 7.6
(a) HPLC chromatogram of standard capsaicin (9.32 min). (b) Standard curve of capsaicin of different concentrations. (c) HPLC chromatogram of dihydrocapsaicin (12.46 min). (d) Standard curve of dihydrcapsaicin of different concentrations. (e) Capsaicin (9.32 min) and Dihydrocapsaicin (12.43 min) from fruit sample of *in vivo* raised plant. (f) Capsaicin (9.32 min) and Dihydrocapsaicin (12.43 min) from fruit sample of *in vitro* raised plant.

Figure 8.1
(a) Dry fruits of *C. chinense* (b) Extracted oleoresins from fruits. (c) Arithmetic and geometric dilution for sensory pungency analysis (d) dilution for colour value analysis.
List of Tables

Table 2.1 Groups of natural products isolated from tissue and suspension cultures of higher plants

Table 2.2 In vitro secondary metabolites production in cell cultures in the last few years

Table 3.1 Effect of 2,4-D and KN on callogenesis from hypocotyls, cotyledon and leaf explants of *C. chinense*

Table 4.1 Effect of nutritional limitation on capsaicin production (μgg⁻¹f.wt) in cell suspension cultures of *C. chinense*

Table 4.2 Effect of nutritional limitation on capsaicin production (μgg⁻¹f.wt) in immobilized cell cultures of *C. chinense*

Table 4.3 Effect of pH stress on capsaicin production in suspension cell cultures of *C. chinense*

Table 4.4 Effect of pH stress on capsaicin production in immobilized cell cultures of *C. chinense*

Table 4.5 Effect of salicylic acid on capsaicin production (μgg⁻¹f.wt) in cell suspension cultures of *C. chinense*

Table 4.6 Effect of salicylic acid on capsaicin production (μgg⁻¹f.wt) in immobilized cell cultures of *C. chinense*.

Table 4.7 Influence of calcium channel on capsaicin production in cell suspension cultures of *C. chinense*

Table 6.1 Accumulation of capsaicin (μgg⁻¹f.wt) under various treatments of precursors and intermediates in suspension cell cultures of *C. chinense*.
Table 6.2 Accumulation of capsaicin (µg g⁻¹ f.wt) under various treatments of precursors and intermediates in immobilized cell cultures of *C. chinense*.

Table 7.1 Adventitious responses of *C. chinense* from cotyledon explants cultured in MS medium supplemented with different concentrations of BAP, TDZ and IAA.

Table 7.2 Effect of auxins on rooting of regenerated shoots of *C. chinense* in MS medium

Table 8.1 Pungency of various chili varieties of the world

Table 8.2 Score sheet for determination of taste threshold for pungency

Table 8.3 Quality evaluation of oleoresins in *C. chinense* fruits