Figure 1: The cell cycle is an ordered cyclical process of events that occurs in four phases. During the two gap phases, G1 and G2, the cell is actively metabolizing but not dividing. In S (synthesis) phase, the chromosomes duplicate as a result of DNA replication. During the M (mitosis) phase, the chromosomes separate in the nucleus and the division of the cytoplasm (cytokinesis) occurs. There are checkpoints in the cycle at the end of G1 and G2 that may prevent the cell from entering the S or M phases of the cycle. Cells that are not in the process of dividing are in the G0 stage, which includes most adult cells. ..................................................................................................... 3

Figure 2: Illustration of caspase-8/caspase-10-dependent procaspase-activation pathway. AIF, apoptosis-inducing factor; Apaf-1, apoptotic protease activation factor-1; FADD, Fas-associated death domain; TNF, tumor necrosis factor; TRADD, TNFR-associated death domain; TRADD, tumor necrosis factor receptor-associated death domain. (Source: Fan et al., 2005). .............................................................................................................................................. 9

Figure 3: Illustration of typical mitochondrion-mediated and caspase-dependent pathway of apoptosis. Apaf-1, apoptotic protease activation factor-1; FADD, Fas-associated death domain; TRADD, tumour necrosis factor receptor-associated death domain. (Model was created using Tinker Cell software; source: Fan et al., 2005). ........................................................................................................ 10

Figure 4: Illustration of DNA damage by ROS evokes p53 and transcriptional activation leading to apoptosis. The tumor suppressor gene p53 down-regulates bcl-2 expression and up-regulates bax, fas, and Apaf-1 expression in response to DNA oxidative damage caused by the radical superoxide. Akt serine/threonine kinase, Apaf-1 apoptosis-activating factor, ERK extracellular signal regulated kinase, JNK c-Jun N-terminal kinase. (Model was created using Tinker Cell software; Source: Gabai et al., 2000). ........................................................................................................ 12

Figure 5: Possible mechanism of action of different anticancer drugs. (Source: http://www.elmhurst.edu/~chm/vchembook/655cancer.html). ..................................................................................................... 14

Figure 6: Commonly used blister beetles for the treatment of different human ailments. a. Mylabris phalerata b. Lytta vesicatoria and c. Mylabris cichorii. (Source: https://www.google.com). ..................................................................................................... 31

Figure 7: Haemolymph containing cantharidin is released from head and leg joints of beetles (Epicauta hirticornis) during external trauma, which causes blister on the skin. (a) Epicauta hirticornis toxin (arrow) and (b) beetles toxin causes blister (circled region) on the skin. .............................................................................................................. 32

Figure 8: Study map of field survey sites in Karbi Anglong district showing the geographical locations of villages/towns covered during the field work (bullets). ......................................................................................................... 41

Figure 9: Photographs captured during field survey showing (a) Epicauta hirticornis and (b) Mylabris cichorii. (c) Collection of beetles by me from their natural habitats and (d) traditional method of blister beetles extract preparation ........................................................................................................................................ 42

Figure 10: Photographs of blister beetles, (a) Mylabris cichorii (b) Epicauta hirticornis. ........................................ 43

Figure 11: Photographs showing stepwise method used for beetles’ extract preparation ............................................. 44

Figure 12: Fractionation of beetles crude extract and isolation of active compound using column chromatography (I). Column fractions vs. cytotoxicity result showed two cytotoxicity peaks E1 and E2 (II). TLC profile of beetles extract observed under fluorescence chamber (III, a and b) and iodine chamber (III, c-e). (a) and (c) crude extract, (d) showing labelling of observed spot on TLC plate under iodine chamber. (b) and (e) isolated compound (E1). .... 45
A combination was injected (i.v., tail vein) into tumorous mice on 9 randomly selected view fields under microscope from each group. Dithiothreitol (DTT) and catalase alone and in (0.5 mg/kg body wt./day) and cisplatin (2 mg/kg body wt./day) treatment (a). Counting was carried out from ten Figure 23: (AO stain) cell morphology after cantharidin treatment (b). ................................................................. 80

Figure 21: Fluorescence microscope (a). Comparative analysis of apoptotic (AO/EB stain), necrotic (AO/EB stain) and autophagy fragmented nucleus; Arrow head: showing vacuoles inside cytoplasm. Cn: cantharidin; CP: cisplatin. ....................................................... 79

Figure 20: HPLC profile of (a) methanol extract before defatting with petroleum ether, (b) methanol extract after defatting with petroleum ether (c) cantharidin. The percent purity of cantharidin was determined by comparing peak area vs. concentration of standard cantharidin. ........................................................................................................ 72

Figure 19: In vivo (a) and in vitro (b) cytotoxicity study in tumor and normal cells. MTT assays showed that DL, EAC and normal cells viability demonstrated a dose- and time-dependence on cantharidin treatment. Comparatively, there was a less cytotoxic effect on normal cells as compared to tumor cells at the same time and concentration. ........................................................................................................ 77

Figure 18: Graph showing the survival pattern of tumor-bearing mice after treatment with the most potent dose of methanol extracts and cantharidin. (a) DL bearing mice and (b) EAC bearing mice. Results are expressed as mean of five different independent experimental sets. ........................................................................................................ 74

Figure 17: The molecular structure of cantharidin i.e. C_{22}H_{12}O_{4} showing the atom-labelling scheme. (a) 3D- structure of cantharidin, displacement is shown at the 50% probability level and (b) 2D- structure of cantharidin. .................. 73

Figure 16: Treatment schedule and design of experiments for antitumor study of cantharidin in mice bearing DL and EAC tumor cells. .................................................................................................................. 50

Figure 15: Screening of antitumor activity of different beetle’s extracts against DL and EAC bearing mice at different treatment conditions. Methanol extract showed highest increase in lifespan (%ILS) in both DL and EAC mice, the same extract also induced higher cell death in in vitro condition. Fig (a) and (b) showing in vivo antitumor activity whereas, Fig (c) and (d) showing in vitro antitumor results treated with different extracts. The results are mean ± S.D. n=3, ANOVA, Post hoc-Tukey test, *P≤ 0.05 as compared with different extracts. ........................................... 72

Figure 14: Photographs showing various steps used in crystallization process of active compound using methanol extract and it’s X-ray diffraction study. ......................................................................................... 47

Figure 13: Photographs showing various steps used in crystallization process of active compound using methanol extract and it’s X-ray diffraction study. ......................................................................................... 47
Figure 24: Cantharidin induces time dependent increase in autophagy cell death in DL cells. Staining with acridine orange showed an increase in acidic vesicular organelle (AVO, shown in arrow) formation in treated cells as compared to untreated controls. (a) Control treated with cantharidin vehicle alone, (b) cisplatin 96h treatment showing nuclear abnormality but no autophagy and (c-f) showing cantharidin treatment after 24-96h. Dotted areas showing zoom view of the viable and autophagy DL cells. (g) TEM view after 96 h of cantharidin treatment also showing AVO formation. Cn: cantharidin; CP: cisplatin.

Figure 25 a: Flow cytometric analysis of cantharidin-mediated apoptosis in DL cells. The cell cycle distributions are presented as cumulative proportions of cells within each of different cell cycle compartments (sub-G0, G0/G1, S and G2/M). Cantharidin treatment (24-96 h) led to accumulation of fragmented DNA at sub-G0 stage which is an indication of apoptotic cell deaths. Cisplatin treatment also showed significant increase in sub-G0 cell population. Gated cells are shown in circled scattered plot for control and different treatment groups. Each experiment was repeated thrice and similar results were obtained. X axis: PI and Y axis: Cell count.

Figure 25 b: Quantitative analysis of different cell cycle compartments by flow cytometry. The result shows that the proportion of sub G0 phase was increased significantly (P≤ 0.05) from 24-96 h of cantharidin treatment and subsequent decrease in G0/G1 and G2/M phase occurred. Data were presented as means ± S.D., ANOVA, n = 3, * P≤ 0.05 vs control. Cisplatin i.e. reference drug, used for 96 h of treatment also showed significant (P≤ 0.05) increase in the percentage (%) of sub G0 phase and decrease in G2/M phase in DL cells.

Figure 26: Cantharidin induced cellular DNA strand breaks/damage revealed by comet assay in DL cells. Demonstration of PI staining results for DL mice, treated with cantharidin showed time dependent increase in % DNA damage. Average % of head and tail DNA for DL cells are shown in lower panel. Data are means ± S.D. (n = 3; 100 cell counts per experiment with three individual replicates). Original comets photo are shown in square box (right corner) and analyzed comets by Comet score software are shown in larger image, drawn curve line indicates head diameter and tail areas. Cantharidin-mediated differential levels of DNA damage are shown in different color. Cn: cantharidin; CP: cisplatin. All scale: 2µm.

Figure 27: Ultrastructural (TEM) features of DL cells. Tumor-bearing control (a), showing more or less rounded shape, normal nucleus with microvilli like processes over the cells surface. Compared with normal microstructure, Cantharidin treatment (0.5mg/kg body wt.) of mice for 24-96 h (c-f) shows the treated cells undergone nuclear shrinking, cytoplasmic vacuolization (regular arrow), disintegration in the cell surface and nuclear membrane, severe fragmented nuclei (dotted arrow) and accumulation of condensed chromatin, which indicates apoptosis. Cisplatin treatment (b, 96 h) also showed almost similar ultrastructural changes like cantharidin. Cn: cantharidin; CP: cisplatin. All scale: 2µm.

Figure 28: Scanning electron microscopic (SEM) figures of cantharidin-treated DL cells. (a) Untreated control cells showed numerous microvilli and ruffles distributing evenly over the cell surface. Cantharidin treatment (c-f) for 24-96 h showed membrane folding/ blebbing (regular arrow) and apoptotic bodies (broken arrow). Cisplatin treatment (b) also showed apoptotic features including loss in membrane ruffles and appearance of membrane folding/blebbing. Cn: cantharidin; CP: cisplatin. All scale: 10µm.

Figure 29 a: Electrophoretic patterns of LDH isoenzymes in DL cells, ascites fluids and blood serum after cantharidin treatment. Lane I, II, III, IV and V showing control, 24 h, 48 h, 72 h and 96 h cantharidin treatment respectively. The presence of all the five isoenzymes forms was noted in the control lane of DL cells, ascites fluid and blood serum. In DL cells after cantharidin treatment, the activity of LDH-1, LDH-2 and LDH-3 were found to be prominently decreased. LDH-4 and LDH-5 showed smearing instead of sharp band. In case of ascites fluids and blood serum, the activity of all the five isoenzymes were noted to be increased significantly after cantharidin treatment (24-96 h).

Figure 29 b: LDH isoenzymes band intensity profile of DL cells (a), blood serum (b) and ascites fluids (c) after cantharidin treatment. The decrease in band intensity of LDH isoenzymes in DL cells and simultaneous increase in ascites fluid and blood serum were noted which may suggest plasma membrane damage in DL cells and LDH release.
in ascites fluids and serum. LDH band intensity was quantified by ImageJ software. Results are presented as mean ± S.D. of three independent experiments performed in triplicate. ................................................................. 90

**Figure 30:** Decrease in mitochondrial membrane potential (ΔΨm) was detected in cantharidin treated cells using fluorochrome rhodamine-123 under confocal laser microscope (a). Rhodamine-123 positive cells showed green fluorescence, reflecting high-polarized (bright) and low-polarized (dim) mitochondria. Cantharidin treatment caused time dependent decrease in high-polarized mitochondria indicating decrease in mitochondrial membrane potential (b). Data were presented as means ± S.D., ANOVA, n = 3, * P ≤ 0.05 vs control. CP- cisplatin; Cn- cantharidin. All scale: 20 μm. ................................................................. 91

**Figure 31:** Flowcytometry analysis of mitochondrial membrane potential (ΔΨm) using rhodamine-123 dye. Mitochondrial staining profiles are shown as fluorescence pulse (FL1-H). Decrease in mitochondrial membrane potential was observed following cantharidin treatment (24-96 h) indicated by shifting of histograms peak towards left from the mean value (vertical line) of control. Mitochondria Gate is shown in encircled scattered plot for each treatment groups. X-axis: green fluorescence, Y-axis: number of events. CP- cisplatin; Cn- cantharidin. .................. 92

**Figure 32:** Cantharidin-mediated expression levels of caspase-9, caspase-3, and cytochrome c (cytosolic and mitochondrial) were assessed by western blot analysis. (a) Cantharidin-mediated time dependent increase in caspase-9, caspase-3, and cytosolic cytochrome c was observed while there was a decrease in mitochondrial cytochrome c. (b) Western blot band intensity profile of caspase-9, caspase-3, and cytochrome c was assessed by ImageJ software. (c) Fluorometry based study of caspase-9 and caspase-3/7 activity using Promega Apo-ONE® assay kit also showed cantharidin-mediated time dependent increase in caspase-9 and caspase-3/7 activity. Data were represented as mean ± S.D. of three independent experiments performed in triplicate. .................................................. 93

**Figure 33:** Cantharidin mediated alteration in mitochondrial structural features in DL cells, kidney and liver. Kidney and liver tissues were taken to compare mitochondrial abnormalities with DL cells. Control group in all the tissues showed normal pattern of cristae and mitochondrial membrane structure with mostly rounded shape. Irregular arrangement of mitochondrial cristae along with disruptions in some parts of the mitochondrial membrane, multivesicular bodies and outer membrane pore were observed after cantharidin treatment in all the tissues. CP- cisplatin; Cn- cantharidin. Scale: 1μm. ................................................................. 95

**Figure 34:** The pattern of changes in succinate dehydrogenase (SDH) activity in Dalton’s lymphoma cells (a), kidney (b), and liver (c) of tumor-bearing mice under different treatment conditions. A significant decrease in the SDH activity was observed in the mitochondria of DL cells, kidney and liver (24-96 h) of cantharidin as well as cisplatin (96 h) treatment. Results are expressed as mean ± S.D. ANOVA, n = 3, *P ≤ 0.05 (Bonferroni’s multiple comparison test) as compared to respective control at corresponding time point of treatment. ................................................. 96

**Figure 35:** Three dimensional structure of succinate dehydrogenase (SDH; PDB: 1PL8) and the interactions of cantharidin in the active site of SDH. (a) Close up view of SDH-cantharidin complex in the active site of SDH, (b) Surface representation of SDH complex with cantharidin, (c) The results of docking simulation showed the presence of total four H-bond interaction with three different amino acids in active site (Tyr 50, Thr 121 and Arg 298) and four hydrophobic interactions (Ser 46, Ile 56, His 69 and Phe 118) between cantharidin and SDH. Hydrogen bonding interactions are shown by green dash lines and hydrophobic contacts are indicated more schematically by an arc, with spokes radiating towards the ligand atoms they contact. ................................................................. 97

**Figure 36:** Measurement of intracellular reactive oxygen species (ROS) production after cantharidin and cisplatin treatment. DL cells were incubated with NBT for 45 min. Absorbance of dissolved NBT was increased in proportion to the treatment duration. Percentage of intracellular superoxide anion production in the liver, kidney and DL cells are shown in (a), (b) and (c) respectively. Data are expressed as mean ± S.D. of three independent experiments. .. 98

**Figure 37 a:** Assay of glutathione related enzymes. Cantharidin treatment resulted in a significant decrease in glutathione peroxidase (GPx) activity in liver and DL cells; whereas, increase in GPx was observed in kidney compared to respective control. Abbreviations of Cont, Cant and Cptn in the figure denotes control, cantharidin and
cisplatin group respectively. Data are expressed as mean ± S.D., ANOVA, n = 3, *P≤ 0.05 and # P≤ 0.001 as compared to the corresponding control groups. ................................................................................................................................. 103

**Figure 37 b:** Cantharidin treatment resulted in a significant decrease in glutathione -S-transferase (GST; EC 2.5.1.18) activity in kidney (48-96 h) and DL cells (24-96 h), whereas, in liver, significant decrease was observed at later phase of treatment (72-96 h). .............................................................................................................................................. 104

**Figure 37 c:** Cantharidin treatment resulted in a significantly decrease in glutathione reductase (GR) activity in liver and DL cells whereas, a significant increase was observed in kidney (48-96h). .............................................................................................................................................. 105

**Figure 38:** Docking structure between cantharidin and glutathione related enzymes. Chemical structure of cantharidin and its interaction with different amino acids of glutathione peroxidase (a), glutathione reductase (c), and glutathione-S-transferase (e) are shown on the left panel. Close up views of cantharidin complexes with the respective enzyme in the active site are shown in the right panel (b, d and f). Cantharidin showed 3, 4 and 1 H-bond interaction with glutathione peroxidase, glutathione reductase and glutathione S-transferase respectively. Cantharidin is represented by a thick stick whereas; amino acids are shown in ball and stick style. Hydrogen bonds between cantharidin and enzymes are represented by green dashed line. .............................................................................................................................. 106

**Figure 39:** Photomicrographs of representatives of bone marrow metaphase chromosome spreads of mice showing normal set of chromosomes (a), reference drug, cisplatin (CP)-treated (b) and after cantharidin treatment for 24-96 h (c-f) showing different types of chromosomal aberrations. Quantitative analysis of mean aberrant metaphase, chromatid break, isochromatid break, chromosomal fragment, exchange, and sister chromatid union induced by cisplatin and cantharidin are shown in (g). Data are mean S.D., n=3, *P ≤ 0.05, as compared to cisplatin. .............................................................................................................................................. 110

**Figure 40:** Photomicrographs of bone marrow cells of mice showing micronuclei (arrows) induced by cantharidin and cisplatin. (a) control, (b) cisplatin 96 h, (c-f) cantharidin treatment from 24-96h respectively. (g) Quantitative analysis of micronuclei induced by cantharidin and cisplatin treatment. Data are mean S.D., n=3, *P ≤ 0.05, as compared to cisplatin. .............................................................................................................................................. 111

**Figure 41:** Photomicrographs of mice spermatozoa showing different types of sperm abnormalities induced by cantharidin and cisplatin in DL mice. (a) normal, (b) looping middle piece, (c) wrong angle hook, (d) coiled tail, (e) hook-less, (f) banana head, (g) beaked head, (h) club shape, (i) bent head, (j) amorphous head, (k) grooved middle piece, (l) knobbed hook, (m) interconnected neck-head connection, (n) diffused head, (o) funnel head and (p) double head. (q) Quantitative analysis of different types of sperm abnormality induced by cantharidin. The data are shown over percent control. ..................................................................................................................................... 112

**Figure 42:** Photomicrographs of the histology of the kidney from control and treated mice. Magnification 600x. Figures in first panel (a, b,c) show kidney cortex. Second panel (d, e, f) show renal tubules and third panel (g,h, i) show glomerulus (7X Zoom). Regular arrow in first panel show glomerulus damage and dotted arrow show renal tubules abnormality. Regular arrow in second panel show accumulation of proteins in renal tubules. Arrow in third panel show glomerulus damage and vacuolation in sub-capsular space. ..................................................................................................................................... 115

**Figure 43:** Photographs showing lactate dyhydrogenase (LDH) isozymes patterns (a), and their net band intensity (b) in kidney at various treatment conditions in a slab gel. LDH isozymes band intensity in control group (lane C) was high for all the isozymes, while it decreased significantly in cantharidin-treated groups (24-96 h). The net band intensity for all isozymes is presented as mean of three different gels. The X axis represents the time ( 24-96 h) of cantharidin treatment of mice. ....................................................................................................................................... 117

**Figure 44:** Photomicrographs of the histological section of the liver from the control and treated mice. Regular arrows in first panel (a-c) are showing pyknotic nuclei which are characterized by smaller nuclei with vacuole and dotted arrow showing damaged hepatocytes. Regular arrows in second panel (d-f) are showing normal nuclei whereas, dotted arrows are showing apoptotic nuclei (5x Zoom). ..................................................................................................................................... 118
Figure 45: Photographs showing Lactate dehydrogenase (LDH) isozymes patterns (a), and their net band intensity (b) in liver at various treatment conditions in a slab gel. LDH isozymes band intensity in control group (lane C) was high for all the isozymes, whereas it decreased significantly in cantharidin-treated groups (24-96 h). The net band intensity for all isozymes is presented as mean of three different gels. ........................................................................................................ 120

Figure 46: Photomicrographs of the histology of spleen from the control and cantharidin-treated normal mice. Encircled areas are showing white pulp region, which is found to be increased after cantharidin treatment for 15 days (b) and 30 days (c). .................................................................................................................................................. 121

Figure 47: Photographs showing lactate dehydrogenase (LDH) isozymes patterns (a), and their net band intensity (b) in spleen at various treatment conditions in a slab gel. Non-uniform pattern of changes in LDH isozymes band intensity after cantharidin treatment was observed. The net band intensity for all isozymes is presented as mean of three different gels. ................................................................................................................................................... 122

Figure 48: Light micrograph (400x) heart from untreated control and cantharidin-treated mice. Normal architecture of myocardium was observed in control group (a-d). After cantharidin treatment of mice for 15 days, near normal myocardial histo-architecture with lessened necrosis and fragmented myofibrils were visible, shown in encircled area (e-h). 30 days of cantharidin treatment showed focal confluent necrosis of muscle fibers with inflammatory cell infiltration and edema with fragmented muscle fibers as shown in encircled region (i-l). A- auricle, V- ventricle. ................................................................................................................................................................................... 123

Figure 49: Photographs showing lactate dehydrogenase (LDH) isozymes patterns (a), and their net band intensity (b) in heart at various treatment conditions in a slab gel. The net band intensity for all isozymes is presented as mean of three different gels. After cantharidin treatment, the band intensity of LDH-2 and LDH-5 increased as compared to others isozymes. ........................................................................................................................................................ 124

Figure 50: Photomicrographs of the histological section of mouse small intestine of the control and treated groups. H and E stain; 400X. Arrow showing damaged villi with disorganized arrangements. ................................................................. 125

Figure 51: Photographs showing lactate dehydrogenase (LDH) isozymes patterns (a), and their net band intensity (b) in small intestine of mice at various treatment conditions in a slab gel. Cantharidin-mediated decrease in LDH-1, LDH-2, LDH-4 and LDH-5 isozymes were observed as compared to respective control. The net band intensity for all isozymes are presented as mean of three different gels. ........................................................................................................ 126

Figure 52: Photomicrographs of the histological section of the mouse testis of the control and treated groups. H and E stain. Regular arrow showing damage seminiferous tubules and dotted arrow showing damage leydig cells. Right panel showing glomerulus tubules in enlarged view (Zoom 3X). .............................................................................................................. 128

Figure 53: Photographs showing lactate dehydrogenase (LDH) isozymes patterns (a), and their net band intensity (b) in testis at various treatment conditions in a slab gel. Cantharidin-mediated decrease in LDH isozymes band intensity was observed (24-96h) as compared to respective control (lane-C). The net band intensity for all isozymes are presented as mean of three different gels. ......................................................................................................... 129

Figure 54: Photomicrographs of the histology of ovary from untreated control and cantharidin-treated mice. Control group (a) shows normal healthy follicles and oocytes. After 30 days of cantharidin treatment there was vacuolization in ovary (shown in dotted arrows) and oocytes deformities (regular arrows). ................................................................................. 130

Figure 55: Photographs showing lactate dehydrogenase (LDH) isozymes patterns (a), and their net band intensity (b) in ovary at various treatment conditions in a slab gel. Cantharidin-mediated decrease in LDH-3, LDH-4 and LDH-5 isozymes band intensity were observed as compared to respective control. The net band intensities for all isozymes are presented as mean of three different gels. ......................................................................................................... 131
Figure 56: Tissue glutathione levels (a), reactive oxygen species levels (b) and lipid peroxidation levels in control and cantharidin treatment groups of mice on 15th and 30th day. GSH: glutathione; ROS: Reactive oxygen species. Values are mean ± S.D., n=5.

Figure 57: Examples for the possible formation of CA by different mechanisms. (a) Formation of reciprocal translocation (1) and dicentric (2). (b) Formation of dicentric and break (3) and intrachromosomal deletion (4). In addition, HRR can occur between homologous DNA sequences in different chromosomes (ectopic HRR) which may lead to exchange type CA such as dicentrics and translocations (Fig. 1a, upper panel). DSB between two direct repeat sequences can be repaired by SSA which leads to the deletion of one repeat unit and the intervening sequence (Fig. 1b, lower panel). Homologous recombination repair (HRR), single-strand annealing (SSA), nonhomologous DNA end joining (NHEJ). Source: Obe et al., 2002.

Figure 58: Proposed cantharidin-mediated biochemical pathway involving genotoxicity showing sperm abnormality, micronucleus and chromosomal aberration.

Figure 59: Proposed possible biochemical events associated with cantharidin-mediated histopathological abnormalities/toxicity, in the mice. The increase cantharidin-induced ROS and LPO causes decrease in cellular/tissues defense system which may lead to tissue toxicity in the host.

Figure 60: Proposed sequence of events involving cantharidin-mediated glutathione related enzyme inhibition, oxidative stress (ROS), decrease in mitochondrial membrane potential as a cumulative effect leading to apoptosis in DL cells (I). At the same time, after cantharidin treatment, a significant decrease in mitochondrial cytochrome c and simultaneous increase in cytosolic cytochrome c may ultimately activate caspase 9 and caspase 3 to affect apoptotic cell death in cancer cells (II). Notation: (+) increased level/activity and thick (-) in circle: inhibition/ decrease in activity/level.
LIST OF TABLES

Table 1: Some clinically used anticancer drugs and their possible mechanism of action .............................. 15

Table 2: Pharmacological information of several marine intermediate metabolites ................................................. 28

Table 3: Ethnopharmacological data on the use of blister beetles by the indigenous people of Karbi Anglong district of Assam, India  ........................................................................................................................................................... 71

Table 4: Crystal information of cantharidin (C_{10}H_{12}O_{4}) showing crystal data, data collection and refinement .......... 75

Table 5: Changes in the level of tissue and mitochondrial lipid peroxidation (µmol/g wet wt. tissue), in the liver, kidney and Dalton’s lymphoma (DL) cells of tumor-bearing mice under different treatment conditions .............................. 100

Table 6: Changes in the reduced glutathione (GSH) contents (µmol/g wet wt. tissue) in the tissues (t-GSH) and mitochondrial fraction (mt-GSH) of normal and tumor-bearing mice under different treatment conditions .............. 102

Table 7: Haematological changes in the normal and tumor-bearing mice under different treatment conditions ... 108

Table 8: Differential leukocytes counts in the blood of normal and tumor-bearing mice under different treatment conditions .................................................................................................................................................................. 109

Table 9: Absolute and relative (%) organ weight and body weight of mice on 15th and 30th days of cantharidin (0.5mg/kg body wt.) treatment ................................................................................................................................. 113

Table 10: Mean values of histological observations of the kidney from mice in experimental and control group ... 116

Table 11: Histological features from longitudinal section of kidneys from control and treated mice ................. 116

Table 12: Details of Karyometric parameters observed in liver from control and cantharidin-treated mice .......... 119

Table 13: Histological features of liver from control and cantharidin-treated mice ............................................ 119

Table 14: Histological features of spleen from control and cantharidin-treated mice ........................................ 122

Table 15: Histological features of heart from control and cantharidin-treated mice ........................................ 124

Table 16: Histological features of small intestine from control and cantharidin-treated mice .......................... 126

Table 17: Analysis of histological features of testis from control and cantharidin-treated mice ....................... 129

Table 18: Analysis of histological features of ovary from control and cantharidin-treated mice ...................... 131