LIST OF FIGURES

Figure 1.1 A Rectangular Digital Image 5
Figure 1.2 Basic Structure of an Image Compression System 12
Figure 2.1 LZW Codebook 27
Figure 2.2 The Quantization Process 30
Figure 2.3 Uniform Quantization 32
Figure 2.4 Codebook Generation 35
Figure 2.5 An Example codebook 35
Figure 2.6 VQ Encoder 35
Figure 2.7 VQ Decoder 37
Figure 2.8 Full Search Method 39
Figure 2.9 Binary Search Method 39
Figure 2.10 Gain-Shape VQ Encoder 44
Figure 2.11 Mean-Removed VQ Encoder 45
Figure 2.12 A Simple Classified VQ Encoder 46
Figure 2.13 Multi-Stage Vector Quantization 47
Figure 4.1 The Proposed Bandelet based Vector Quantization Scheme 95
Figure 4.2 Original Image and respective Reconstructed Images obtained using the Proposed and Existing Methods (PSNR: 24db): (a) 256 x 256 Original Image, (b) Reconstructed Image using the Proposed BVQ, (c) Reconstructed Image using Wk-means VQC, (d) Reconstructed Image using WPLBGC, and (e) Reconstructed Image using WPk-means VQC 95
Figure 4.3 Original Images and their respective Reconstructed Images using BVQ algorithm : (a) Wood and Stock Textures Image, (b) Seabed Seismic Image, (c) Geometric Shapes Image and (d) Geometric Pattern Image; (e), (f), (g), and (h) the respective Reconstructed Images of (a), (b), (c) and (d) 96
Figure 4.4 Threshold Vs Image Quality 99
Figure 5.1 Block Diagram of the Vector Quantization Process 109
Figure 5.2 Competitive Learning Neural Network Architecture 110
Figure 5.3 Proposed Neuro-Statistical Quantization Scheme 117
Figure 5.4 Proposed Image Compression Scheme 119
Figure 5.5 Original Image and respective Reconstructed Images obtained using the Proposed and Existing Methods: (a) 256 x 256 Original Image, (b) Reconstructed Image using the Proposed NSQ, (c) Reconstructed Image using NVQ 123

Figure 5.6 The Impact of Polynomial Order on Bit Rate and Image Quality: (a) Polynomial Order Vs Bit Rate and (b) Polynomial Order Vs PSNR 126

Figure 5.7 The Impact of Image Size on Various Performance Measures for Various Images : (a) Image size Vs Bit Rate and (b) Image Size Vs PSNR 126

Figure 5.8 Original and Reconstructed Images using Various Neural Networks Illustrating the Effect of Statistical Modeling: (a) 256 x 256 Original Lena Image, (b) Enlarged Eye Portion of the Original Image, (c) Enlarged Eye Portion of the Proposed WNSQ 1 Scheme; Reconstructed Images: (d) WNSQ I, (e) Wavelet LVQ, (f) WNSQ II, (g) Wavelet SOM, (h) WNSQ III, (i) Wavelet CPL 128

Figure 6.1 Structured Reversible Neuro-Statistical Sparse Transform Framework for Image Compression: (a) Forward Transform (b) Reverse Transform 134

Figure 6.2 The Impact of the Proposed Work on Various Performance Measures by Varying the Size of the Original Image: (a) Image Size Vs Distortion, (b) Image Size Vs PSNR, (c) Image Size Vs Compression Ratio, (d) Image Size Vs Bit Rate and (e) Image Size Vs Computation Time 136

Figure 6.3 Rate-Distortion Chart for Various Images using the SRNSST Framework 138

Figure 6.4 Original and Reconstructed Images: (a) Original Image (b) Reconstructed Image using the SRNSST Framework and (c) Reconstructed Image using the JPEG 2000 Standard 140
LIST OF TABLES

Table 1.1 Multimedia Data Types and Uncompressed Storage Space Required 8
Table 1.2 Access Speed and Capacity of Various Storage Devices 8
Table 4.1 Performance of the Proposed Work at Various Square Sizes and Scale Factors for the Cameraman and Barbara Images 97
Table 4.2 Significance of Correlation Analysis 99
Table 4.3 Correlation Analysis along the Row, Column and Block Vectors of the Bandeletized Coefficients for Various Test Images 100
Table 4.4 Performance Analysis of the Proposed BVQ for Various Images 101
Table 4.5 Performance Comparison of the Proposed BVQ with Existing Methods for the Barbara Image with PSNR 24.21db 102
Table 4.6 Performance Analysis of the Proposed BVQ using Various Wavelet Functions for the 256 X 256 Lena Image 103
Table 5.1 Performance Comparison of the Existing VQ Techniques for a Compression Ratio of 2.9 121
Table 5.2 A Comparative Analysis of the Performance of the Proposed Work with Existing Algorithms for Compression Ratio of 2.9 in the Spatial Domain 122
Table 5.3 The Impact of Image Size on Computation Time (in Sec.) 127
Table 5.4 Performance Comparison between the Proposed WNSQ I (with modeling) and the Wavelet-LVQ (without modeling) 129
Table 5.5 Performance Comparison between Various Neural based Schemes Illustrating the Effect of Statistical Modeling 130
Table 6.1 Performance Comparison between the Proposed BVQ, the WBVQ and the WNSQ I Image Compression Schemes 133
Table 6.2 Performance Comparison of the Proposed SRNSST Framework with the Proposed WBVQ Scheme 137
Table 6.3 Performance Comparison of the Proposed Work with the JPEG2000 Standard 140
Table 6.4 Performance Analysis of the Proposed SRNSST Framework using Natural Images 141
LIST OF ABBREVIATIONS

AVQ Adaptive Vector Quantization
bpp bits per pixel
BVQ Bandelet based Vector Quantizer
CCITT Consultative Committee of the International
 Telephone and Telegraph
CPL Competitive learning algorithm
db decibels
DCT Discrete Cosine Transform
DFSVQ Dynamic Finite-State Vector Quantization
EENNS Equal-average Equal-variance Nearest Neighbor
 Search
ENNS Equal-average Nearest Neighbor Search
GLA Generalized Lloyd Algorithm
ISO International Standards Organization
ITU International Telecommunication Union
JPEG Joint Photographic Experts Group
LBG Linde, Buzo and Gray
LVQ Learning Vector Quantization
LZW Lempel-Ziv and Welch
MRVQ Mean Residual Vector Quantization
MSE Mean Square Error
MSVQ Multi-Stage Vector Quantization
NSQ Neuro-Statistical Quantization
NVQ Neural based Vector Quantization
PVQ Pyramid Vector Quantization
PSNR Peak Signal to Noise Ratio
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RVQ</td>
<td>Residual Vector Quantizer</td>
</tr>
<tr>
<td>SOM</td>
<td>Self-Organizing Map</td>
</tr>
<tr>
<td>SRNSST</td>
<td>Structured Reversible Neuro-Statistical Sparse</td>
</tr>
<tr>
<td>Transform</td>
<td></td>
</tr>
<tr>
<td>SVD</td>
<td>Singular Value Decomposition</td>
</tr>
<tr>
<td>TSVQ</td>
<td>Tree Structured Vector Quantization</td>
</tr>
<tr>
<td>VQ</td>
<td>Vector Quantization</td>
</tr>
<tr>
<td>WBVQ</td>
<td>BVQ in the Wavelet domain</td>
</tr>
<tr>
<td>Wk-means VQC</td>
<td>Wavelet based k-means VQ Coder</td>
</tr>
<tr>
<td>W_pk-means VQC</td>
<td>Wavelet-Packet based k-means VQ Coder</td>
</tr>
<tr>
<td>W_pLBGC</td>
<td>Wavelet-Packet based Linde - Buzo - Gray Coder</td>
</tr>
<tr>
<td>WNSQ I</td>
<td>Wavelet based Neuro Statistical Quantizer using LVQ</td>
</tr>
<tr>
<td>WNSQ II</td>
<td>Wavelet based Neuro Statistical Quantizer using SOM</td>
</tr>
<tr>
<td>WNSQ III</td>
<td>Wavelet based Neuro Statistical Quantizer using CPL</td>
</tr>
<tr>
<td>ZVP</td>
<td>Zero Vector Pruning</td>
</tr>
</tbody>
</table>