CHAPTER -II

ON A SUBCLASS OF ANALYTIC FUNCTIONS DEFINED BY A
GENERALISED DIFFERENTIAL OPERATOR

2.1. In this chapter, we introduce certain new subclasses \(f(z) \in T^m S(\gamma, k) \) and \(G(A, B) \) of analytic functions by using a generalized differential operator. Also we find the various results including coefficient estimates, growth and distortion theorems, radius of starlikeness, convexity and close-to-convexity, integral means inequalities for the function.

2.2. Let \(f \in A \), then \(f \) is of the form

\[
f(z) = z + \sum_{i=2}^{\infty} a_i z^i
\]

which are analytic in the open unit disk \(E = \{z \in \mathbb{C} : |z| < 1\} \).

Let \(f \in T \), where \(T \) is the subclass of \(A \), then \(f \) is in the form

\[
f(z) = z - \sum_{n=2}^{\infty} a_n z^n \quad (a_n \geq 0).
\]

This subclass was introduced and extensively studied by Silverman [71].

Let \(f \) be a function in the class \(A \). We define the following differential operator introduced by Raducanu and Orhan [59].

\[
\begin{align*}
\mathcal{D} f(z) &= f(z) \\
\mathcal{D}^2 f(z) &= \alpha \beta z^2 f''(z) + (\alpha - \beta)zf'(z) + (1 - \alpha + \beta) f(z)
\end{align*}
\]
\[D f(z) = D(\frac{m^3}{\alpha^3} f(z)), \]
(2.5)

where \(0 \leq \beta \leq \alpha \leq 1 \) and \(m \in \mathbb{N} \leq \{1, 2, 3, \ldots\} \).

If \(f \) is given by (2.1) then from the definition of the operator \(D f(z) \) it is to see that

\[m \frac{D}{\alpha^\beta} f(z) = z + \sum_{n=2}^{\infty} A_n(\alpha, \beta, m) a_n z^n \]
(2.6)

where

\[A_n(\alpha, \beta, m) = [1 + (\alpha \beta n + \alpha - \beta)(n - 1)]^m \]
(2.7)

When \(\alpha = 1 \) and \(\beta = 0 \) we get Salagean differential operator [68]. When \(\beta = 0 \), we obtain the differential operator defined by Al-Oboudi [5].

If \(f \in T \) is given by (2.2) then we have

\[m \frac{D}{\alpha^\beta} f(z) = z - \sum_{n=2}^{\infty} A_n(\alpha, \beta, m) a_n z^n \]
(2.8)

where \(A_n(\alpha, \beta, m) \) is given by (2.7)

In this chapter, using the operator \(m \frac{D}{\alpha^\beta} f(z) \), we define the following new subclass motivated by Murugusunderamoorthy and Magesh [49].

Definition 2.2.1. If \(f(z) \in S_{\alpha^\beta}(\gamma, k) \), where \(f \) is in the form (2.1), then
for \(0 \leq \gamma \leq 1, \ k \geq 0\).

Further we define \(T_{m} S_{\alpha}(\gamma, k) = S_{\alpha}^{m}(\gamma, k) \cap T\).

Theorem 2.2.2. If \(f(z) \in S_{\alpha}^{m}(\gamma, k)\), where \(f\) is in the form (2.1), then

\[
\sum_{n=2}^{\infty} [n(1+k) - (\gamma + k)] A_{n}(\alpha, \beta, m)|a_n| \leq 1 - \gamma
\]

(2.9)

where \(0 \leq \gamma < 1, \ k \geq 0\) and \(A_{n}(\alpha, \beta, m)\) is given by (2.7)

Proof: It is enough to show that

\[
\Re \left\{ \frac{z^{m} D f(z)'}{D f(z)} - 1 \right\} \leq 1 - \gamma
\]

We have

\[
\Re \left\{ \frac{z^{m} D f(z)'}{D f(z)} - 1 \right\} \leq 1 - \gamma
\]
\[
\leq (1 + k) \left| \frac{\frac{m}{\alpha} D f(z)}{z} \right| - 1
\]

\[
\leq \frac{(1 + k) \sum_{n=2}^{\infty} (n-1)A_n(\alpha, \beta, m) |a_n| |z|^{n-1}}{1 - \sum_{n=2}^{\infty} A_n(\alpha, \beta, m) |a_n| |z|^{n-1}}
\]

The last expression is bounded above by \((1 - \gamma)\) if

\[
\sum_{n=2}^{\infty} [n(1 + k) - (\gamma + k)] A_n(\alpha, \beta, m) |a_n| \leq 1 - \gamma
\]

And the proof is complete.

Theorem 2.2.3. Let \(0 \leq \gamma < 1, k \geq 0\) then \(f \in T_{m, (\alpha) \gamma} S(\gamma, k)\), where \(f\) is in the form (2.2), Iff

\[
\sum_{n=2}^{\infty} [n(1 + k) - (\gamma + k)] A_n(\alpha, \beta, m) \leq 1 - \gamma
\]

(2.10)

where \(A_n(\alpha, \beta, m)\) is given by (2.7)

Proof: In view of the above Theorem, it is enough to prove the necessity. If \(f \in T_{m, (\alpha) \gamma} S(\gamma, k)\) and \(z\) is real then
\[
\frac{1 - \sum_{n=2}^{\infty} A_n(\alpha, \beta, m) a_n z^{n-1}}{1 - \sum_{n=2}^{\infty} n A_n(\alpha, \beta, m) a_n z^{n-1}} - \gamma \geq k \frac{\sum_{n=2}^{\infty} (n-1) A_n(\alpha, \beta, m) a_n z^{n-1}}{1 - \sum_{n=2}^{\infty} A_n(\alpha, \beta, m) a_n z^{n-1}}
\]

Along the real axis, \(z \to 1 \) we get the desired inequality

\[
\sum_{n=2}^{\infty} [n(1+k) - (\gamma + k)] A_n(\alpha, \beta, m) |a_n| \leq 1 - \gamma,
\]

where \(0 \leq \gamma < 1, \ k \geq 0 \) and \(A_n(\alpha, \beta, m) \) are given by (2.7).

Corollary 2.2.4. If \(f(z) \in T^{m}_{\alpha \beta} S(\gamma, k) \), then

\[
|a_n| \leq \frac{1 - \gamma}{[n(1+k) - \lambda(\gamma + k)] A_n(\alpha, \beta, m)}
\]

where \(0 \leq \gamma < 1, \ k \geq 0 \) and \(A_n(\alpha, \beta, m) \) are given by (2.7). Equality holds for the function

\[
f(z) = z - \frac{1 - \gamma}{[n(1+k) - (\gamma + k)] A_n(\alpha, \beta, m)} z^n
\]

Theorem 2.2.5. Let \(f_i(z) = z \) and

\[
f_n(z) = z - \frac{1 - \gamma}{[n(1+k) - (\gamma + k)] A_n(\alpha, \beta, m)} z^n, \ n \geq 2.
\]

Then \(f(z) \in T^{m}_{\alpha \beta} S(\gamma, k) \), Iff it can be in the form
\[f(z) = \sum_{n=1}^{\infty} w_n f_n(z) , \quad w_n \geq 0, \quad \sum_{n=1}^{\infty} w_n = 1 \]
(2.14)

Proof. Suppose that \(f(z) \) can be written as in (2.14). Then

\[f(z) = z - \sum_{n=2}^{\infty} w_n \frac{1 - \gamma}{n(1+k) - (\gamma + k)} A_n(\alpha, \beta, m) z^n \]

Now,

\[\sum_{n=2}^{\infty} w_n \frac{(1 - \gamma)(n(1+k) - (\gamma + k)) A_n(\alpha, \beta, m)}{(1 - \gamma) (n(1+k) - (\gamma + k)) A_n(\alpha, \beta, m)} = \sum_{n=2}^{\infty} w_n = 1 - w_1 \leq 1. \]

Thus \(f(z) \in T^m S(\gamma, k) \).

Conversely, let us have \(f(z) \in T^m S(\gamma, k) \). Then by using (2.11), we get

\[w_n = \frac{n(1+k) - (\gamma + k) A_n(\alpha, \beta, m)}{(1 - \gamma)} a_n, \quad n \geq 2 \]

and \(w_1 = 1 - \sum_{n=2}^{\infty} w_n \). Then we have \(f(z) = \sum_{n=1}^{\infty} w_n f_n(z) \) and hence this completes the proof of Theorem.

Theorem 2.2.6. The class \(T^m S(\gamma, k) \) is a convex set.

Proof. Let the function

\[f_j(z) = z - \sum_{n=2}^{\infty} a_{n,j} z^n, \quad a_{n,j} \geq 0, \quad j=1,2 \]
(2.15)
be in the class $T^m_{(a, b)}(\gamma, k)$. It is enough to show that the function $h(z)$ defined by

$$h(z) = \xi f_1(z) + (1-\xi) f_2(z), \quad 0 \leq \xi < 1,$$

is in the class $T^m_{(a, b)}(\gamma, k)$. Since

$$h(z) = z - \sum_{n=2}^{\infty} \left[\xi a_{n,1} + (1-\xi) a_{n,2} \right] z^n,$$

with the help of Theorem 2.2.3, and by an easy computation, we get

$$\sum_{n=2}^{\infty} [n(1+k)-(\gamma+k)] \xi A_n(\alpha, \beta, m)a_{n,1} + \sum_{n=2}^{\infty} [n(1+k)-(\gamma+k)] (1-\xi) A_n(\alpha, \beta, m)a_{n,2}$$

$$\leq \xi (1-\gamma) + (1-\xi)(1-\gamma)$$

$$\leq (1-\gamma),$$

which implies that $h \in S(\gamma, k)$.

Hence $T^m_{(a, b)}(\gamma, k)$ is convex.

Theorem 2.2.7. If $f \in T^m_{(a, b)}(\gamma, k)$, where $f(z)$ is in the form (2.2) Then

is close-to-convex of order δ $(0 \leq \delta < 1)$ in the disc $|z| < r_1$, where

$$r_1 = \inf_{n \geq 2} \left[\frac{(1-\delta) \sum_{n=2}^{\infty} [n(1+k)-(\gamma+k)] A_n(\alpha, \beta, m) n(1-\gamma)}{n(1-\gamma)} \right]^{1/\gamma_{n-1}}, \quad n \geq 2. \quad (2.16)$$

The outcome is sharp, with the extremal function $f(z)$ by (2.13)
Proof. Given $f \in T$, and f is close-to-convex of order δ, we have

$$|f'(z) - 1| < 1 - \delta \quad (2.17)$$

For the L.H.S. of (2.17) we have

$$|f'(z) - 1| \leq \sum_{n=2}^{\infty} na_n |z|^{n-1}$$

The R.H.S. of the above inequality is less than $1 - \delta$

$$\sum_{n=2}^{\infty} \frac{n}{1-\delta} a_n |z|^{n-1} \leq 1.$$

We have $f(z) \in T_{\alpha}^{m}(\gamma, k)$ iff

$$\sum_{n=2}^{\infty} \frac{[n(1+k) - \lambda(\gamma + k)]A_n(\alpha, \beta, m)}{(1-\gamma)} a_n \leq 1,$$

We can (2.17) is true if

$$\frac{n}{1-\delta} |z|^{n-1} \leq \frac{[n(1+k) - (\gamma + k)]A_n(\alpha, \beta, m)}{(1-\gamma)}$$

or, equivalently,

$$|z| \leq \left(\frac{(1-\delta)[n(1+k) - (\gamma + k)]A_n(\alpha, \beta, m)}{n(1-\gamma)} \right)^{\frac{1}{n-1}}$$

the proof is completed.

Theorem 2.2.8. If $f \in T_{\alpha}^{m}(\gamma, k)$ Then $f(z)$ is starlike of order δ $(0 \leq \delta < 1)$ in the disc $|z| < r_2$, where
\[
 r_2 = \inf_{n \geq 2} \left[\frac{(1 - \delta) \sum_{n=2}^{\infty} n(1+k) - (\gamma + k) A_n(\alpha, \beta, m)}{(n-\delta)(1-\gamma)} \right]^{\gamma/(\alpha-1)}
\]

(2.18)

The result is sharp, with the extremal function given by (2.13).

Proof. Given \(f \in T \), and is starlike of order \(\delta \), we have

\[
 \left| \frac{zf'(z)}{f(z)} - 1 \right| < 1 - \delta
\]

(2.19)

For the L.H.S. of (2.19), we have

\[
 \left| \frac{zf'(z)}{f(z)} \right| \leq \sum_{n=2}^{\infty} \frac{n(1-\delta) a_n |z|^{n-1}}{1 - \sum_{n=2}^{\infty} a_n |z|^{n-1}}
\]

R.H.S. of the above is less than \(1 - \delta \) if

\[
 \sum_{n=2}^{\infty} \frac{n(1-\delta) a_n |z|^{n-1}}{1 - \sum_{n=2}^{\infty} a_n |z|^{n-1}} < 1
\]

We have \(f(z) \in T_{m}^{S(\gamma,k)} \) iff

\[
 \sum_{n=2}^{\infty} \frac{n(1+k) - (\gamma + k) A_n(\alpha, \beta, m)}{(1-\gamma)} a_n \leq 1
\]

(2.19) is true if

\[
 \sum_{n=2}^{\infty} \frac{n(1-\delta) |z|^{n-1}}{1 - \sum_{n=2}^{\infty} a_n |z|^{n-1}} \leq \frac{n(1+k) - (\gamma + k) A_n(\alpha, \beta, m)}{(1-\gamma)}
\]

Or equivalently
\[|z|^{n-1} \leq \frac{(1-\delta)[n(1+k)-(\gamma +k)]A_{k}(\alpha, \beta, m)}{(n-\delta)(1-\gamma)} \]

It yields starlikeness of the family.

In [72], Silverman found that the function \(f_{2}(z) = z - \frac{z^2}{2} \) is often extremal over the family \(T \). He applied this function to resolve his integral means inequality conjectured [72] and settled in [73], that

\[
\int_{0}^{2\pi} \| f(re^{i\varphi}) \|^{n} d\varphi \leq \int_{0}^{2\pi} \| f_{2}(re^{i\varphi}) \|^{n} d\varphi ,
\]

for all \(f \in T \), \(\eta > 0 \) and \(0 < r < 1 \). In [73], he also proved his conjecture for the subclasses \(T^{*}(\alpha) \) and \(C(\alpha) \) of \(T \).

Now, we prove Silverman’s conjecture for the class of functions \(T^{m}_{\gamma,k}S(\alpha) \).

We need the concept of subordination between analytic functions and a subordination theorem of Littlewood [38].

Two functions \(f \) and \(g \), which are analytic in \(E \), the function \(f \) is said to be subordinate to \(g \) in \(E \) if there exists a function \(w \) analytic in \(E \) with \(w(0) = 0 \), \(|w(z)| < 1 \), \((z \in E) \) such that \(f(z) = g(w(z)) \), \((z \in E) \). We denote this subordination by \(f(z) \prec g(z) \).

Lemma 2.2.9. [38] If the functions \(f \) and \(g \) are analytic in \(E \) with \(f(z) \prec g(z) \), then for \(\eta > 0 \) and \(z = re^{i\varphi} \), \(0 < r < 1 \)
Now, we discuss the integral means inequalities for functions $f \in T^m(\gamma, k)$.

\[
\left[\int_0^{2\pi} \left| g(re^{i\theta}) \right|^i d\phi \right]^{\frac{1}{i}} \leq \left[\int_0^{2\pi} \left| f(re^{i\theta}) \right|^i d\phi \right]^{\frac{1}{i}}
\]

Theorem 2.2.10. Let $f(z) \in T^m(\gamma, k)$, $0 \leq \gamma < 1$, $k \geq 0$ and $f_2(z)$ be defined by

\[
f_2(z) = z - \frac{1-\gamma}{\phi_2(\gamma, k)} z^2 \quad (2.20)
\]

Proof. For $f(z) = z - \sum_{n=2}^{\infty} a_n z^n$, (2.20) is equivalent to

\[
\left[\int_0^{2\pi} \left| 1 - \sum_{n=2}^{\infty} a_n z^n \right|^i d\phi \right]^{\frac{1}{i}} \leq \left[\int_0^{2\pi} \left| 1 - \frac{1-\gamma}{\phi_2(\gamma, k)} z \right|^i d\phi \right]^{\frac{1}{i}}
\]

By Lemma 2.2.9, it is enough to prove that

\[1 - \sum_{n=2}^{\infty} a_n z^{n-1} < 1 - \frac{1-\gamma}{\phi_2(\gamma, k)} z\]

Assuming

\[1 - \sum_{n=2}^{\infty} a_n z^{n-1} < 1 - \frac{1-\gamma}{\phi_2(\gamma, k)} w(z),\]

and using (2.10) we obtain
\[|w(z)| = \left| \sum_{n=2}^{\infty} \frac{\varphi_n(\gamma, k)}{1-\gamma} a_n z^{n-1} \right| \leq |z| \sum_{n=2}^{\infty} \frac{\varphi_n(\gamma, k)}{1-\gamma} a_n \leq |z| \]

where \(\varphi_n(\gamma, k) = [n(1+k) - (\gamma+k)]A_n(\alpha, \beta, m) \)

Hence the proof is completed.

2.3. In this section we study the coefficient bounds, radius of close-to-convex and starlikeness, convex linear combinations for the class \(T_{\alpha\beta}^m(\lambda, \gamma) \).

Also, we obtained integral means inequalities for the function \(f(z) \in T_{\alpha\beta}^m(\lambda, \gamma) \).

Definition 2.3.1. If \(f(z) \in S_{\alpha\beta}^m(\lambda, \gamma) \) where \(f \) is in the form (2.1), then it satisfies the inequality

\[
\text{Re} \left\{ \frac{z \left(\frac{m}{\alpha\beta} \mathcal{D} f(z) \right)'}{(1-\lambda)z + \lambda \frac{m}{\alpha\beta} \mathcal{D} f(z)} - \alpha \right\} > \left| \frac{z \left(\frac{m}{\alpha\beta} \mathcal{D} f(z) \right)'}{(1-\lambda)z + \lambda \frac{m}{\alpha\beta} \mathcal{D} f(z)} - 1 \right|
\]

for \(0 \leq \lambda \leq 1, \ 0 \leq \gamma \leq 1, \) and \(\frac{m}{\alpha\beta} \mathcal{D} f(z) \) is defined in (2.6).

Further we define \(T_{\alpha\beta}^m(\lambda, \gamma) = S_{\alpha\beta}^m(\lambda, \gamma) \cap T \).

Theorem 2.3.2. If \(f(z) \in S_{\alpha\beta}^m(\lambda, \gamma) \) where \(f \) is in the form (2.1), then
\[
\sum_{n=2}^{\infty} [2n-\lambda(\gamma+1)] A_n(\alpha, \beta, m) |a_n| \leq 1 - \gamma \tag{2.21}
\]

where \(0 \leq \lambda \leq 1,\ 0 \leq \gamma < 1\), and \(A_n(\alpha, \beta, m)\) is given by (2.7).

Proof: It suffices to show that

\[
\left| \frac{z^{m f(z)}}{(1-\lambda)z + \lambda D f(z)} \right| - 1 \leq 1 - \gamma \leq \left| \frac{z^{m f(z)}}{(1-\lambda)z + \lambda D f(z)} \right| - 1
\]

We have

\[
\left| \frac{z^{m f(z)}}{(1-\lambda)z + \lambda D f(z)} \right| - 1 \leq 2 \left| \frac{z^{m f(z)}}{(1-\lambda)z + \lambda D f(z)} \right| - 1
\]

\[
\leq 2 \sum_{n=2}^{\infty} (n-\lambda) A_n(\alpha, \beta, m) |a_n| z^{n-1}
\]

\[
\leq 1 - \sum_{n=2}^{\infty} \lambda A_n(\alpha, \beta, m) |a_n| z^{n-1}
\]
\[
\frac{2 \sum_{n=2}^{\infty} (n - \lambda)A_n(\alpha, \beta, m)a_n}{1 - \sum_{n=2}^{\infty} \lambda A_n(\alpha, \beta, m)a_n}
\]

The last expression is bounded above by \((1 - \gamma)\) if

\[
\sum_{n=2}^{\infty} [2n - \lambda(\gamma + 1)] A_n(\alpha, \beta, m)a_n \leq 1 - \gamma
\]

and the proof is complete.

Theorem 2.3.3. Let \(0 \leq \lambda \leq 1, \ 0 \leq \gamma < 1, f(z) \in T^m_{S(\lambda, \gamma)}, \) where \(f\) is in the form (2.2) Iff

\[
\sum_{n=2}^{\infty} [2n - \lambda(\gamma + 1)] A_n(\alpha, \beta, m) \leq 1 - \gamma
\]

(2.22)

where \(A_n(\alpha, \beta, m)\) are given by (2.7)

Proof: In view of Theorem 2.3.2, it is enough to prove the necessity.

If \(f \in T^m_{S(\lambda, \gamma)}\) and \(z\) is real then

\[
\Re \left\{ \frac{1 - \sum_{n=2}^{\infty} nA_n(\alpha, \beta, m)a_n z^{n-1}}{1 - \sum_{n=2}^{\infty} \lambda A_n(\alpha, \beta, m)a_n z^{n-1}} - \gamma \right\} > \frac{\sum_{n=2}^{\infty} (n - \lambda)A_n(\alpha, \beta, m)a_n z^{n-1}}{1 - \sum_{n=2}^{\infty} \lambda A_n(\alpha, \beta, m)a_n z^{n-1}}
\]

Along the real axis, \(z \to 1\) we get the desired inequality

\[
\sum_{n=2}^{\infty} [2n - \lambda(\gamma + 1)] A_n(\alpha, \beta, m)a_n \leq 1 - \gamma
\]
where $0 \leq \lambda < 1$, $0 \leq \gamma < 1$, and $A_n(\alpha, \beta, m)$ are given by (2.7).

Corollary 2.3.4. If $f(z) \in T^m S^\lambda(\alpha, \gamma)$, then

$$|a_n| \leq \frac{1-\gamma}{[2n-\lambda(\gamma +1)]A_n(\alpha, \beta, m)}$$

(2.23)

where $0 \leq \lambda < 1$, $0 \leq \gamma < 1$, and $A_n(\alpha, \beta, m)$ are given by (2.7). Equality holds for the function

$$f(z) = z - \frac{1-\gamma}{[2n-\lambda(\gamma +1)]A_n(\alpha, \beta, m)} z^n$$

(2.24)

Theorem 2.3.5. Let $f_i(z) = z$ and

$$f_n(z) = z - \frac{1-\gamma}{[2n-\lambda(\gamma +1)]A_n(\alpha, \beta, m)} z^n, \quad n \geq 2.$$

(2.25)

Then $f(z) \in T^m S^\lambda(\alpha, \gamma)$, iff it can be expressed in the form

$$f(z) = \sum_{n=1}^{\infty} w_n f_n(z), \quad w_n \geq 0, \sum_{n=1}^{\infty} w_n = 1$$

(2.26)

Proof. Suppose $f(z)$ can be written as in (2.26). Then

$$f(z) = z - \sum_{n=1}^{\infty} w_n \frac{1-\gamma}{[2n-\lambda(\gamma +1)]A_n(\alpha, \beta, m)} z^n$$

Now,
\[
\sum_{n=2}^{\infty} w_n \frac{(1-\gamma)(2n-\lambda(\gamma+1))A_n(\alpha, \beta, m)}{(1-\gamma)(2n-\lambda(\gamma+1))A_n(\alpha, \beta, m)} = \sum_{n=2}^{\infty} w_n = 1 - w_1 \leq 1.
\]

Thus \(f(z) \in T^{m}_{\lambda, \gamma}(z) \).

Conversely, let us have \(f(z) \in T^{m}_{\lambda, \gamma}(z) \). The by using (2.23), we get

\[
w_n = \frac{[2n - \lambda(\gamma + 1)]A_n(\alpha, \beta, m)}{(1-\gamma)} a_n, \quad n \geq 2
\]

and \(w_i = 1 - \sum_{n=2}^{\infty} w_n \). Then we have \(f(z) = \sum_{n=1}^{\infty} w_n f_n(z) \) and hence this,

Proof is completed

\textbf{Theorem 2.3.6.} The class \(T^{m}_{\lambda, \gamma}(z) \) is a convex set.

\textbf{Proof.} Let the function

\[
f_j(z) = z - \sum_{n=2}^{\infty} a_{n,j} z^n, \quad a_{n,j} \geq 0, j=1,2
\]

be in the class \(T^{m}_{\lambda, \gamma}(z) \). It is enough to show that the function \(h(z) \) defined

by \(h(z) = \xi f_1(z) + (1-\xi) f_2(z), \quad 0 \leq \xi < 1 \), is in the class \(T^{m}_{\lambda, \gamma}(z) \). Since

\[
h(z) = z - \sum_{n=2}^{\infty} \left[\xi a_{n,1} + (1-\xi) a_{n,2} \right] z^n,
\]

with the help of Theorem 2.3.3, and by easy computation, we get
\[
\sum_{n=2}^{\infty} [2n-\lambda(\gamma+1)] \xi A_n(\alpha, \beta, m)a_{n,1} + \sum_{n=2}^{\infty} [2n-\lambda(\gamma+1)] (1-\xi) A_n(\alpha, \beta, m)a_{n,2} \\
\leq \xi (1-\gamma) + (1-\xi)(1-\gamma) \\
\leq (1-\gamma),
\]

which implies that \(h \in S(\lambda, \gamma) \).

Hence \(T S(\lambda, \gamma) \) is convex.

Next we will get the radius of close-to-convexity, starlikeness and convexity for the class \(T S(\lambda, \gamma) \).

Theorem 2.3.7. If \(f(z) \in T S(\lambda, \gamma) \), where \(f(z) \) is in the form (2.2), Then \(f(z) \) is close-to-convex of order \(\delta \) (0 \(\leq \delta < 1 \)) in the disc \(|z| < r_1 \), where

\[
r_1 = \inf_{n \geq 2} \left[\frac{(1-\delta) \sum_{n=2}^{\infty} [2n-\lambda(\gamma+1)] A_n(\alpha, \beta, m)}{n(1-\gamma)} \right]^{1/n}, \quad n \geq 2. \quad (2.28)
\]

The outcome is sharp, with the extremal function by (2.25)

Proof. Given \(f \in T \), and \(f \) is close-to-convex of order \(\delta \), we have

\[
|f''(z) - 1| < 1 - \delta \quad (2.29)
\]

For the L.H.S. of (2.29) we have
\[|f'(z) - 1| \leq \sum_{n=2}^{\infty} n a_n |z|^{n-1} \]

R.H.S. of the above is less than \(1 - \delta \)

\[\sum_{n=2}^{\infty} \frac{n}{1 - \delta} a_n |z|^{n-1} \leq 1. \]

Using the fact, that \(f(z) \in T_{\text{m}} S(\lambda, \gamma) \) iff

\[\sum_{n=2}^{\infty} \frac{[2n - \lambda(\gamma + 1)]A_n(\alpha, \beta, m)}{(1 - \gamma)} a_n \leq 1, \]

(2.29) is true if

\[\frac{n}{1 - \delta} |z|^{n-1} \leq \frac{[2n - \lambda(\gamma + 1)]A_n(\alpha, \beta, m)}{(1 - \gamma)} \]

or, equivalently,

\[|z| \leq \left(\frac{(1 - \delta)[2n - \lambda(\gamma + 1)]A_n(\alpha, \beta, m)}{n(1 - \gamma)} \right)^{\frac{1}{n-1}} \]

the proof is completed.

Theorem 2.3.8 If \(f(z) \in T_{\text{m}} S(\lambda, \gamma) \), where \(f(z) \) is in the form (2.2), then \(f(z) \) is starlike of order of order \(\delta \) \((0 \leq \delta < 1)\) in the disc \(|z| < r_2\), where

\[r_2 = \inf_{n=2} \left[\frac{(1 - \delta)[2n - \lambda(\gamma + 1)]A_n(\alpha, \beta, m)}{(n - \delta)(1 - \gamma)} \right]^{\frac{1}{n-1}} \]

(2.30)
The result is sharp, with extremal function \(f(z) \) by (2.25).

Proof. Given \(f \in T \), and \(f \) is starlike of order \(\delta \), we have

\[
\left| \frac{zf'(z)}{f(z)} - 1 \right| < 1 - \delta \tag{2.31}
\]

For the L.H.S. of (2.31) we have

\[
\left| \frac{zf'(z)}{f(z)} - 1 \right| \leq \sum_{n=2}^{\infty} \frac{(n-1)a_n |z|^{n-1}}{1 - \sum_{n=2}^{\infty} a_n |z|^{n-1}}
\]

R.H.S. of the above is less than \(1 - \delta \) if

\[
\sum_{n=2}^{\infty} \frac{n - \delta}{1 - \delta} a_n |z|^{n-1} < 1.
\]

Using the fact that \(f(z) \in T^m S(\lambda, \gamma) \) iff

\[
\sum_{n=2}^{\infty} \frac{[2n - \lambda(\gamma + 1)]A_n(\alpha, \beta, m)}{(1 - \gamma)} a_n \leq 1,
\]

(2.31) is true if

\[
\sum_{n=2}^{\infty} \frac{n - \delta}{1 - \delta} |z|^{n-1} \leq \frac{[2n - \lambda(\gamma + 1)]A_n(\alpha, \beta, m)}{(1 - \gamma)}
\]

or equivalently

\[
|z|^{n-1} \leq (1 - \delta) \frac{[2n - \lambda(\gamma + 1)]A_n(\alpha, \beta, m)}{(n - \delta)(1 - \gamma)}
\]

which yields the starlikeness of the family.
Theorem 2.3.9. Let \(f(z) \in T^m \), \(0 \leq \lambda < 1, \ 0 \leq \gamma < 1 \), and \(f_z(z) \) be defined by

\[
f_z(z) = z - \frac{1 - \gamma}{\phi_2(\lambda, \gamma)} z^2
\]

(2.32)

Proof. For \(f(z) = z - \sum_{n=2}^{\infty} a_n z^n \), (2.32) is equivalent to

\[
\int_0^{2\pi} \left| \sum_{n=2}^{\infty} a_n z^{n-1} \right|^2 d\varphi \leq \int_0^{2\pi} \left| 1 - \frac{1 - \gamma}{\phi_2(\lambda, \gamma)} z \right|^2 d\varphi
\]

By Lemma 2.2.9, it is enough to prove that

\[
1 - \sum_{n=2}^{\infty} a_n z^{n-1} \prec 1 - \frac{1 - \gamma}{\phi_2(\lambda, \gamma)} z
\]

Assuming

\[
1 - \sum_{n=2}^{\infty} a_n z^{n-1} \prec 1 - \frac{1 - \gamma}{\phi_2(\lambda, \gamma)} w(z),
\]

and using (2.22) we obtain

\[
|w(z)| = \left| \sum_{n=2}^{\infty} \frac{\phi_n(\lambda, \gamma)}{1 - \gamma} a_n z^{n-1} \right| \leq |z| \sum_{n=2}^{\infty} \frac{\phi_n(\lambda, \gamma)}{1 - \gamma} a_n \leq |z|
\]

where \(\phi_n(\lambda, \gamma) = [2n - \lambda(\gamma + 1)]A_n(\alpha, \beta, m) \)

This completes the proof.
2.4. Introduction: In this section we investigate properties like distortion, rotation theorem, coefficient estimates and radius of convexity for functions in the class $G(A, B)$ and showed the results are sharp.

Now we define the class $G(A, B)$ and study some of its properties.

Definition 2.4.1: Let f be analytic in E, $f(0) = f'(0) = 1$. Then $f(z) \in G(A, B)$ iff \exists a function $g(z) \in S(a, b)$, s.t. for $z \in E$.

$$\frac{f'(z)}{g'(z)} = \frac{1 + A \ w(z)}{1 + B \ w(z)}, -1 \leq B < A \leq 1,$$

$g(z)$ satisfies the condition

$$|g'(z) - a| < b$$

(2.34)

for $a + b \geq 1$, $b \leq a \leq b+1$, $z \in E$ and w is a Schwartz function analytic in E with $w(0) = 0$ and $|w(z)|<1$ in E.

Theorem 2.4.2: (Distortion Theorem)

Let $f(z) \in G(A, B)$. Then for $|z| = r$ and $0 \leq r < 1$

$$\frac{b - (b^2 - a^2 + a)r (1 - Ar)}{b - (1 - a)r (1 - Br)} \leq |f'(z)| \leq \frac{b + (b^2 - a^2 + a)r (1 - Ar)}{b + (1 - a)r (1 - Br)}$$

(2.35)

The outcome is sharp.

Proof: Since $f(z) \in G(A, B)$, then

$$\frac{f'(z)}{g'(z)} = \frac{1 + A \ w(z)}{1 + B \ w(z)}, -1 \leq B < A \leq 1$$

for some $g(z) \in S(a, b)$ and $w(z)$ is a Schwartz function analytic in E with $w(0) = 0$, $|w(z)|<1$.

49
It is known [50] that the images of the closed disk $|z| \leq r$ under the transformation

$$P(z) = \frac{1 + A \frac{w(z)}{1 + B \frac{w(z)}}}{1 - B^2 r^2}$$

are in the closed disk with center ‘C’ and radius ‘d’ where

$$C = \frac{1 - A B r^2}{1 - B^2 r^2}, \quad d = \frac{(A - B) r}{1 - B^2 r^2}.$$

Thus we have

$$\left| \frac{f'(z)}{g'(z)} - \frac{1 - A B r^2}{1 - B^2 r^2} \right| \leq \frac{(A - B) r}{1 - B^2 r^2}$$

so which shows that

$$\frac{1 - A r}{1 - B r} \leq \left| \frac{f'(z)}{g'(z)} \right| \leq \frac{1 + A r}{1 + B r}$$

(2.36)

Since $g(z) \in S(a, b)$, it is known that [51]

$$\frac{b - (b^2 - a^2 + a) r}{b - (1 - a) r} \leq |g'(z)| \leq \frac{b + (b^2 - a^2 + a) r}{b + (1 - a) r}$$

(2.38)

using (2.38) in (2.37) we obtained the result.

This outcome is sharp.

Taking $\frac{f'(z_0)}{g'(z_0)} = \frac{1 + A z}{1 + B z}, \ g'(z_0)$ with $g_0(z_0) \in S(a, b)$

such that $g'_0(z_0) = \frac{b + (b^2 - a^2 + a) z}{b + (1 - a) z}$

Theorem 2.4.3: If $f(z) \in G(A, B)$, then

(i) $|a_2| \leq \frac{(A - B) b + (b^2 - (1 - a)^2)}{2 b}$
(ii) \[|a_3| \leq \frac{(A-B)b + (1+A-B)(b^2-(1-a)^2)}{3b} \]

The estimate (ii) is sharp.

Proof: Let \[\frac{f'(z)}{g'(z)} = \frac{1+A}{1+B} \frac{w(z)}{w(z)} \] then

\[w(z) = \frac{f'(z) - g'(z)}{Ag'(z) - Bg'(z)} \] (2.39)

Let \[w(z) = \sum_{n=1} w_n z^n \] and \[g(z) = z + \sum_{m=2} b_m z^m. \]

On substituting the power series \(f'(z), g'(z) \) and \(w(z) \) in (2.39) we get

\[\left[A \left(1 + \sum_{m=2}^\infty mb_m z^{m-1} \right) - B \left(1 + \sum_{m=2}^\infty mb_m z^{m-1} \right) \right] \left(\sum_{m=1}^\infty w_m z^m \right) = \sum_{m=2}^\infty m(a_m - b_m) z^{m-1} \] (2.40)

Equating the coefficients of \(z^2 \) and \(z^3 \) on both sides of (2.40) we get

\[|a_2| \leq \frac{1}{2} \left[(A-B)w_1 + 2|b_2| \right] \] (2.41)

and

\[3|a_3| \leq 3|b_3| + 2(A-B)\|w_1\| + (A-B)\|w_2 - Bw_1\| \] (2.42)

It is known [23] that

\[|b_2| \leq \frac{b^2 - (1-a)^2}{2b} \] and \[|b_3| \leq \frac{b^2 - (1-a)^2}{3b} \] (2.43)

and known [50] that \(|w_1| \leq 1 \) (2.44)

Also we know [34] that for \(S \) any complex

\[|w_2 - 3w_1| \leq \max \{ |w_3|, |b_3| \} \] (2.45)
On using (2.43), (2.44) and (2.45) we obtain the required results from (2.41) and (2.42) respectively.

The bound is sharp in (i) for the function

\[f(z) = \int_0^z \frac{b + (b^2 - a^2 + a)z}{b + (1 - a)z} \left(1 + Az \right) \left(1 + Bz \right) dz. \]

Radius of Convexity

Here we solve the problem of finding the radius of convexity for the class \(G(A, B) \). For this we need the following lemma.

Lemma 2.4.4: Let \(p(z) = \frac{1 + Aw(z)}{1 + Bw(z)} \), \(-1 \leq B < A \leq 1\)

where \(|w(z)| < 1\) in \(E \). Then for \(|z| = r < 1\)

\[\text{Re} \left\{ \frac{zp'(z)}{p(z)} \right\} \geq -\frac{(A - B)r}{(1 - Ar)(1 - Br)} \quad R_1 \leq R_2 \]

and

\[\text{Re} \left\{ \frac{zp'(z)}{p(z)} \right\} \geq \frac{A + B}{A - B} + \frac{2}{(A - B)(1 - r^2)} \left(L_i K_i \right)^{-\frac{1}{2}} - \left(1 - ABr^2 \right) \quad \text{if} \quad R_2 \leq R_1 \]

where

\[R_1 = \left(\frac{L_i}{K_i} \right)^{\frac{1}{2}}, \quad R_2 = \frac{(1 - Ar)}{(1 - Br)}, \quad L_i = (1 - A)(1 + Br^2) \]

and \(K_i = (1 - B)(1 + Br^2) \)

The outcome is sharp.
Theorem 2.4.5: Let \(f \in G(A, B) \). Then

\[
|\arg f'(z)| \leq \arcsin \frac{(A-B)r}{1-ABr^2} + \arcsin \left(\frac{b \{b^2 - (1-a)^2 \} r}{b^2 - (b^2 - a^2 + a)} \right) \frac{1}{(1-ab)^2}
\]

Proof: Since \(f \in G(A, B) \) we may write from (2.36)

\[
\left| \frac{f'(z)}{g'(z)} \right| \geq \frac{(A-B)}{1-ABr^2}, \quad g \in S(a, b).
\]

This implies

\[
\left| \arg \frac{f'(z)}{g'(z)} \right| \leq \arcsin \frac{(A-B)r}{1-ABr^2}
\]

Or

\[
|\arg f'(z)| \leq \arcsin \frac{(A-B)r}{1-ABr^2} + |\arg g'(z)|
\]

(2.46)

For the function \(g(z) \in S(a, b) \), it is known [51] that

\[
|\arg g'(z)| \leq \arcsin \left(\frac{b \{b^2 - (1-a)^2 \} r}{b^2 - (b^2 - a^2 + a)} \right) \frac{1}{(1-ab)^2}
\]

(2.47)

using (2.47) in (2.46) the result follows.

Theorem 2.4.6: If \(f \in G(A, B) \) then

\[
\text{Re} \left\{ \frac{zf'(z)}{f(z)} \right\} \geq \begin{cases} M_1(r) & \text{for } R_1 \leq R_2 \\ M_2(r) & \text{for } R_2 \leq R_1 \end{cases}
\]

where

\[
M_1(r) = 1 - \frac{b \{b^2 - (1-a)^2 \} r}{(1-r) \{b - (b^2 - a^2 + a)\} r^2} + \frac{(A-B)r}{(1-ar)(1-br)}
\]

and

\[
M_2(r)
\]

53
\[M_z (r) = 1 - \frac{p^2 - (1 - a^2)}{(1 - r)p - (b^2 - a^2 + a)r} + \frac{(A + B)}{(A - B)} + 2 \left(\frac{L K_i^{1}}{A - B} \right) \left(1 - A B r^2 \right) \]

with \(R_1, R_2, L_1, K_i \) are defined in the above lemma.

Proof: \(f \in G(A, B) \Rightarrow \frac{f'(z)}{g'(z)} = \frac{1 + A w(z)}{1 + B w(z)} \)

and \(g(z) \in s(a, b) \). Now substituting \(p(z) = \frac{f'(z)}{g'(z)} \) then

\[p(z) = \frac{1 + A w(z)}{1 + B w(z)} \]. Differentiating logarithmically we obtain

\[\frac{zp'(z)}{p(z)} - \frac{(zf'(z))'}{f(z)} = \frac{(zg'(z))'}{g(z)} \]

So

\[\text{Re} \left(\frac{zp'(z)}{p(z)} \right) = \text{Re} \left(\frac{(zf'(z))'}{f(z)} - \frac{(zg'(z))'}{g(z)} \right) \]

It is known [51] that for \(g \in s(a, b) \)

\[\text{Re} \left(\frac{(zg'(z))'}{g'(z)} \right) \geq 1 - \frac{p^2 - (1 - a^2)}{(1 - r)p - (b^2 - a^2 + a)r} \]

(2.48)

Thus using Lemma 2.4.4 and (2.48) we have

\[\text{Re} \left(\frac{(zf'(z))'}{f(z)} \right) \geq 1 - \frac{p^2 - (1 - a^2)}{(1 - r)p - (b^2 - a^2 + a)r} - \frac{(A - B)r}{(1 - Ar)(1 - Mr)} \]

for \(R_1 \leq R_2 \)

\[\geq 1 - \frac{p^2 - (1 - a^2)}{(1 - r)p - (b^2 - a^2 + a)r} + \frac{(A + B)}{(A - B)} + 2 \left(\frac{L K_i^{1}}{A - B} \right) \left(1 - A B r^2 \right) \]

for \(R_2 \leq R_1 \).
Sharpness of the bound when $R_1 \leq R_2$ follows if we take $g_0 \in S(a, b)$ such that

$$P_0(z) = \frac{f_0'(z)}{g_0'(z)} = \frac{1 + Az}{1 + Bz} \text{ and } \left(\frac{zg_0'(z)}{g_0'(z)} \right)' = 1 - \frac{b^2 - (1 - a^2)r}{(1 - r)b - (b^2 - a^2 + a)}.$$

(2.49)

Therefore

$$\frac{zP_0'(z)}{P_0(z)} = \frac{(A - B)z}{(1 + Az)(1 + Bz)} \text{ and at } z = -r$$

$$\text{Re} \frac{zP_0''(z)}{P_0(z)} = -\frac{(A - B)r}{(1 - Ar)(1 - Br)}.$$