List of Figures with Concise Captions

Chapter 1
Fig. 1.1. Global sea level curve (Miller et. al., 2004)
Fig. 1.2. World map showing some basin locations of marine to continental transition.
Fig. 1.3. Sedimentary basins in India with four examples of representative marine to continental transitions as, 1. Kutch Basin, 2. Indus Forearc Basin, 3. Himalayan Foreland Basin and 4. Bengal basin. (Map source : ONGC Web page)
Fig. 1.4. Schematic chart of marine to continental transition in Himalayan orogeny.
Fig. 1.5. Physiographic map and Google topographic image of Mizoram area, India.

Chapter 2
Fig. 2.1. Map of South Asia showing lithotectonic belts of Himalayan and Indo-Burman orogens and locations of Assam and the Bengal Basin. The Indian shield and Shillong Plateau expose Precambrian crystalline rocks. Approximate limits of the Indus and Bengal fan are shown (after Uddin and Lundberg, 1998a).
Fig. 2.2. Schematic composite cross section showing major morphological and structural units of Indo-Burmese Range and Central Burma Basin (modified after S.K. Acharyaa, 2006)
Fig. 2.3 Tectonic model of the Himalaya (after Gansser, 1964)
Fig. 2.4. Geological map of Bengal basin and adjoining area published by Himalayan Research Laboratory, Auburn University Albama, USA.
Fig. 2.5. Stratigraphic framework of the Bengal basin. (Note that Miocene sediment thickness is considerably lower in the northwestern part of the basin (Indian platform), which is underlain by continental crust (basement contact not exposed or penetrated in remainder of basin). Abbreviations: CFB: Chittagong fold belts; ST: Sylhet trough. Data sources: Khan and Muminullah (1980), Ahmed (1983), Reimann (1993), and field work by A. Uddin.)
Fig. 2.6. Geological and location map of selected sections for this study.
Fig. 2.7. Geological map of the study area comprising part of the Himalayan Foreland basin in the NW Himalaya (after Rafterman, 2000)

Chapter 3
Fig. 3.1. Graphical representation of methodology used in this thesis
Fig. 3.2. Sedimentological methodology approached steps- 1&2: Measurement of lithological units from centimeters to meters scale. 3&4: Detailed documentation of lithology. Further steps are as preparation of Lithologs, Lithological characters and Depositional Environment.

Fig. 3.3. Types of alignment of the magnetic moments in atoms after various magnetic materials. The solid arrow represents the external field while the hollow arrow represents the net magnetic moment in the material.

Fig. 3.4. Magnetic domains.

Fig. 3.5. Graph between magnetic grain size vs. temperature (from, Butler, 1992)

Fig. 3.6. Magnetic Hysteresis loop for ferromagnetic material (Thompson and Oldfield, 1986)

Chapter 4

Fig. 4.1. Location map of sections selected for study from Mizoram area.

Fig. 4.2. Litholog of Barail Group sediments exposed around Champhai area.

Fig. 4.3. Lithologs of sections (2) PG section near Bownkawn & (3) SR section near Bawnkawn

Fig. 4.4. Litholog of Bawnkawn-Durtlang (BD) road section representing the Middle bhuban Formation

Fig. 4.5. Litholog of Tuirial Section representing Middle and Upper Bhuban Formation

Fig. 4.6. Litholog Aizwal -Siphir road section representing Upper Bhuban Formation

Fig. 4.7. Litholog of Sairang road start from Aizwal representing Upper Bhuban Formation

Fig. 4.8. Litholog of (8) Sairang road- middle part and (9) Sairang road- middle end representing Upper Bhuban Formation

Fig. 4.9. Litholog of University road section representing Upper Bhuban Formation

Fig. 4.10. Litholog of Airport road section representing Upper Bhuban Formation

Fig. 4.11. Litholog of Rangtekawn-zero point road section exposing Surma Group sediments in Kolasib area.

Fig. 4.12. Litholog of Kolasib-Bairabhi road section exposing Tipam Group sediments in Kolasib area.

Fig. 4.13. Litholog of detailed documented part from Tipam group sediments.

Fig. 4.14. Litholog of Kaushalya river section near Parwanoo.

Fig. 4.15. Litholog of Kaushalya river section near Chakki-ka-Mode.
Chapter 5

Fig 5.1. Triangular plots of QFL and QtFL for Surma basin sediments
Fig. 5.2. Triangular plots of QmFLt, LmLvLs and QpLvLs for Surma basin sediments.
Fig. 5.3. Triangular plots of QFL and QtFL for Subathu basin sediments.
Fig. 5.4. Triangular plots of QmFLt, LmLvLs and QpLvLs for Subathu basin sediments.

Chapter 6

Fig. 6.1. i) The bubble plot of Minimum vs Maximum χ_{lf} and ii) the bubble plot for Minimum SIRM/X_{lf} vs maximum SIRM/χ_{lf}
Fig. 6.2. a) Bi variate plot of SIRM/χ_{lf} Vs $B_{(0)CR}$ (Thompson and Oldfied, 1986) for individual lithology b) Bi variate plot of SIRM/χ_{lf} Vs $B_{(0)CR}$ (Thompson and Oldfied, 1986) for various lithologies in the Surma basin.
Fig. 6.3. Bi variate plot of SIRM Vs K_{lf} for various lithologies in the study area
Fig. 6.4. Variation in the representative mineral magnetic parameters as a function of lithostratigraphy in the BD section.
Fig. 6.5. Lithostratigraphic variation of the mineral magnetic parameters in Turial section.
Fig. 6.6. Mineral magnetic variations in lithostratigraphy for the Sairang road-start section.
Fig. 6.7. Lithological variation of the magnetic parameters in the Sairang Road-end section.
Fig. 6.8. Lithological variations in the mineral magnetic parameters from the University Road Section.
Fig. 6.9. Lithostratigraphic variation in magnetic mineralogy for the Airport Road section.
Fig. 6.10. Mineral magnetic variation in the Kolasib section.
Fig. 6.11. Mineral magnetic-lithologic variations in the Bhairabi Road section.
Fig. 6.12. i) The bi-plot variation of minimum versus maximum χ_{lf} and ii) Minimum versus maximum variations in the SIRM/χ_{lf} ratio.
Fig. 6.13. a) Bi variate plot of SIRM/χ_{lf} Vs $B_{(0)CR}$ and b) Bi variate plot of SIRM/χ_{lf} Vs $B_{(0)CR}$ with combined lithology
Fig. 6.14. Bi variate plot variation of SIRM vs K_{lf} for various lithologies in the Subathu basin.
Fig. 6.16. Lithological variation of magnetic parameters in the Chakki ka mode section

Chapter 7

Fig. 7.1. Marine to continental transition models of Surma Basin and Subathu basin.