CONTENTS

Certificates
List of Figures vi
List of Tables xii
Preface xiii
Acknowledgement xvi

CHAPTER I

Introduction
1. Climatic Variations 1
2. Indian Monsoon 2
3. Oceanography of the Arabian Sea 3
 3.1. Southwest Monsoon 4
 3.1.1. Surface Circulation 4
 3.1.2. Sea Surface Temperature 4
 3.1.3. Sea Surface Salinity 6
 3.1.4. Productivity 6
 3.2. North East monsoon 8
 3.2.1. Surface circulation 8
 3.2.2. Sea Surface Temperature 9
 3.2.3. Sea Surface Salinity 9
 3.2.4. Productivity 10
4. Oxygen Minimum Zone 11
5. Previous research related to the objectives of the present study 13
 5.1. Sea surface temperature reconstructions in the Arabian Sea 13
 5.2. Reconstruction of Carbonate ion 14
 5.2.1. Paleocarbonate ion Proxies 15
5.3. Monsoon productivity and OMZ variability 16
5.4. NE Monsoon and Winter cooling 17

6. Proxies used in the study 17
6.1. Planktonic foraminifer 17
6.2. Oxygen isotopes 19
6.2.1. Oxygen Isotope as a Stratigraphic Tool in Paleoceanography 20
6.3. Carbon Isotopes (δ¹³C) 21
6.4. Geochemical Elements 22
6.5. Nitrogen isotopes (δ¹⁵N) 23
6.6. Calcium carbonate 23
6.7. Organic carbon 23

7. Objectives 24

CHAPTER II
Study Area, Material and Methods

1. Geographic Setting of the Arabian Sea 25
2. Sediment Cores 26
3. Chronologies of Cores 27
4. Methods 29
4.1. Processing of Sediment 29
4.2. Census counts of Planktonic Foraminifera 29
4.3. Oxygen and carbon isotopes 30
4.4. Nitrogen and carbon isotopes 30
4.5. Elemental Analysis 30
4.6. Calcium Carbonate 31
4.7. Planktonic foraminifera Shell weights 31
4.8. Artificial Neural Network 32
CHAPTER III

Sea Surface Temperature Changes During May and August in the Western Arabian Sea over the last 22kyr: Implications as to Shifting of the Upwelling Season

1. Introduction
2. Materials and Methods
3. Results
4. Discussion
 4.1. Difference in SST between May and August
5. Conclusions

CHAPTER IV

What Controls The Planktonic Foraminifer Shell Weights In The Arabian Sea?

1. Introduction
2. Factors controlling shell calcification on millennial timescales in the Arabian Sea
 2.1 Factors controlling shell calcification in the eastern Arabian Sea
 2.1.1. Quantification of surface water carbonate ion concentrations using shell weights
 2.2 Factors controlling shell calcification in the western Arabian Sea
3. Factors affecting shell calcification on a seasonal timescale: a comparison between (sediment trap studies)
4. Conclusion
CHAPTER V

OMZ Variability in the Eastern Arabian Sea: Implications of Productivity

1. Introduction 63
2. Chronology 65
3. Results and Discussion 66
 3.1 Early to Late Holocene contrast in productivity, denitrification, OMZ intensity and calcite dissolution. 66
 3.2 Changes in surface productivity, denitrification and bottom-water oxygenation intensity 67
 3.3 Calcite dissolution due to variations in bottom-water oxygenation 71
 3.4 Variations in denitrification, bottom water oxygenation and calcite dissolution during the last 70 kyr. 74
4. Conclusions 77

CHAPTER VI

Variability of Winter Cooling in the NE Arabian Sea: Implications for the NE Monsoon

1. Introduction 78
2. Material and Methods 79
 2.1. Chronology 80
3. SST variation at the core location 80
4. Results 81
 4.1. Oxygen and carbon isotopes 81
 4.2. Fertile Planktonic foraminifer species 82
 4.3. Calcium carbonate 83
 4.4. SST 83
5. Discussions

5.1. Variability of Winter Cooling

5.2. Relationship between SW and NE Monsoon Variability

5.3. Periodicity of NE Monsoon

6. Conclusions

CHAPTER VII

Summary and Conclusions

References

Publications:

