List of Figures

Figure 1.1 Schematic showing energy level arrangement of different types of semiconductor core-shell NCs.

Figure 1.2. Schematic of strain formation after ZnS shell cladding on CdS nanocrystal.

Figure 1.3. Schematic representation of different types of compositional NCs.

Figure 1.4. Graphics describing (a) Propagating Surface Plasmon Resonance (PSPR) and (b) Localized Surface Plasmon Resonance (LSPR).

Figure 2.1 Flowchart depicting steps involved in synthesis of CdS/ZnS NCs.

Figure 2.2 Steps involved in synthesis of Cd\textsubscript{x}Zn\textsubscript{1-x}S/ZnS NCs.

Figure 2.3 Flowchart depicting steps involved in synthesis of CdS/ZnS NCs.

Figure 2.4 Schematic diagram of x-ray diffractometer.

Figure 2.5 Schematic diagram of UV-Visible spectrometer.

Figure 2.6 Block diagram of experimental setup of photoluminescence.

Figure 2.7 (a) Time delay in the start and stop pulse corresponding to the decay time of that sample and related histogram of the observed photons. (b) Schematic of the functioning of TCSPC module.

Figure 2.8 Energy level diagram depicting difference in IR absorption and Raman scattering.

Figure 2.9 Schematic representation of Raman scattering system.

Figure 3.1 (a) HRTEM image of CdS-0 NCs showing inter planar distance, (b) TEM image of CdS-0 NCs (c) electron diffraction (SAED) pattern of CdS-0 NCS, (d) HRTEM image of CdS-4 NCs with inter planar distance, (e) TEM image of CdS-4 NCs, (f) SAED pattern of CdS-4 NCs. Insets in (c) and (f) show size distribution.
Figure 3.2 Optical absorption and PL spectra of (a) CdS-0 and (b) CdS-4 NCs recorded at room temperature. * indicates excited state transition. Insets show the defect levels for the corresponding NCs.

Figure 3.3 Background subtracted absorption spectra of (a) CdS-0 and (b) CdS-4 NCs.

Figure 3.4 (a) Photoluminescence spectra of CdS-0, (b) CdS-4 NCs at 10 K with excitation energy 3.3 eV (375 nm), (c) Photoluminescence excitation spectra of CdS-0 recorded by holding the emission energy at 2.99 eV constant and (d) CdS-4 NCs (emission energy at 2.89 eV) at 10 K along with fitted Gaussian peaks (blue lines).Inset for (d) shows schematic of transition energies.

Figure 3.5 (a) Energy level diagram for CdS-0 NCs with the highest size and the lowest size (deduced from PLE), (b) for CdS-0 and CdS-4 NCs, (c) change in the hole energy levels with size and on shell formation (marked with dotted box).

Figure 3.6 Room temperature (300 K) and low temperature (8 K) radiative lifetime curves of CdS-0, CdS-2, CdS-3 and CdS-4 NCs.

Figure 3.7 (a) Change in decay time of CdS-0, CdS-2, CdS-3 and CdS-4 NCs with temperature. Solid lines represent the best fit to the experimental data by equation 3.2. (b) Decay rate (Γ) with increase in shell ML. Γ₁ and Γ₂ are transition rates of ground and first excited levels respectively.

Figure 4.1 X-ray diffraction pattern for alloy core and core-shell NCs with two different sizes of alloy core. CdS and ZnS bulk pattern are shown for reference.

Figure 4.2 Room temperature photoluminescence and optical absorption spectra for (a) CdZnS-I NCs, (b) CdZnS/ZnS-I NCs, (c) CdZnS-II NCs, and (d) CdZnS/ZnS-II NCs.

Figure 4.3 Emission line width as a function of temperature. The solid line represents the fitting curve.

Figure 4.4 Room temperature time resolved photoluminescence spectra for alloyed core and core-shell NCs.

Figure 5.1 X-ray diffraction spectra of ZnSe and ZnSe-Ag0.5 NCs.
Figure 5.2 TEM and selected area electron diffraction pattern of (a)ZnSe, (b)ZnSe-Ag0.5, and (c)Ag NCs.

Figure 5.3 Optical absorption spectra of ZnSe and ZnSe-Ag0.5 NCs. Inset shows surface plasmon resonance of Ag NCs in the precursor solution having size of about 6 nm.

Figure 5.4 (a) Normalized band-edge PL peak intensity, and (b) normalized defect PL intensity as a function of temperature for ZnSe and ZnSe-Ag0.5 NCs.

Figure 5.5 Line width as a function of temperature for ZnSe and ZnSe-Ag0.5 NCs.

Figure 5.6 PL spectra of ZnSe and ZnSe-Ag0.5 NCs at room temperature.

Figure 5.7 TRPL spectra for ZnSe and ZnSe-Ag0.5 NCs at room temperature.

Figure 5.8 Raman spectra of ZnSe and ZnSe-Ag0.5 NCs.

Figure 5.9 Change in PL intensity and Raman intensity with Ag concentration in ZnSe NCs.

Figure AI.1 XRD spectra of CdS-0, and CdS-4 NCs, XRD pattern for bulk ZnS and CdS is shown for comparison.

Figure AI.2 (a)-(d) W-H plots for CdS-0, CdS-2, CdS-3, and CdS-4 NCs. Solid lines represent linear fit to the points. The strain is calculated from the slope of the fit.

Figure AII.1 Transmission electron micrographs of CdZnS/ZnS-I NCs (a), and CdZnS/ZnS-II NCs (b). Size dispersion is 6.2% and 4.5% respectively. Selected area electron diffraction (SAED) pattern for CdZnS/ZnS-I NCs (c), and CdZnS/ZnS-II NCs (d).

Figure AII.2 Photoluminescence spectra with temperature for (a) CdZnS-I, (b) CdZnS/ZnS-I, (c) CdZnS-II, (d) CdZnS/ZnS-II NCs.

Figure AII.3 Change in the energy gap as a function of temperature for alloy and alloy-shell samples. Solid lines represent fit to the Varshni equation.

Figure AII.4 Photoluminescence peak intensity with temperature for CdZnS samples.

Figure AII.5 Change in the energy gap as a function of temperature for alloy and alloy-shell samples. Solid lines represent fit to the O’Donell-Chen equation.

Figure AIII.1 X-ray diffraction pattern of ZnSe and ZnSe-Ag NCs.
Figure AIII.2 Temperature dependent photoluminescence spectra of (a) ZnSe and (b) ZnSe-Ag0.5 NCs.

Figure AIII.3 XPS Survey scans for ZnSe and ZnSe-Ag0.5 NCs.

Figure AIII.4 Detailed scan for Zn-2p peaks for ZnSe and ZnSe-Ag0.5 NCs.

Figure AIII.5 Schematic energy level diagram for ZnSe-Ag NCs.

Figure AIV.1 XRD pattern of ZnSe nanorods and ZnSe-Au nano-structures.

Figure AIV.2 TEM of (a) ZnSe nanorods and (b) ZnSe-Au nano-structures.

Figure AIV.3 Optical absorption spectra for ZnSe nanorods and ZnSe-Au nano-structures.

Figure AIV.4 Raman spectra for ZnSe nanorods and ZnSe-Au nano-structures.

Figure AIV.5 Photoluminescence spectra for ZnSe nanorods and ZnSe-Au nano-heterostructures.