Figure II: Histopathology of Heart

Figure 1: Normal

Figure 2: PFG

Figure 3: NPFG

Figure 4: PFO

Figure 5: NPFO

Figure 6: Vitamin E
Figure III: Histopathology of Kidney

Figure 1: Normal

Figure 2: PFG

Figure 3: NPFG

Figure 4: PFO

Figure 5: NPFO

Figure 6: Vitamin E
Figure I: Histopathology of Liver

Figure 1: Normal

Figure 2: PFG

Figure 3: NPFG

Figure 4: PFO

Figure 5: NPFO

Figure 6: Vitamin E
Figure I: Histopathology of Liver

Figure I: Normal

Figure 2: LA control

Figure 3: LA+No treatment

Figure 4: LA+PFG
Figure II: Histopathology of Heart

Figure I: Normal

Figure 2: LA control

Figure 3: LA+No treatment

Figure 4: LA+PFG
Figure III: Histopathology of Kidney

Figure I: Normal

Figure 2: LA control

Figure 3: LA+No treatment

Figure 4: LA+PFG
Figure I: Peripheral Blood Smear Examination

Figure 1: Normal

Figure 2: LA control

Figure 3: LA&PFG

Figure 4: LA&PFO

Figure 5: LA&Vitamin E
Figure II: Histopathology of Heart

Figure 1: Normal

Figure 2: LA control

Figure 3: LA &PFG

Figure 4: LA&PFO

Figure 5: LA&Vitamin E
Figure I: Histopathology of Liver

Figure 1: Normal

Figure 2: LA control

Figure 3: LA & PFG

Figure 4: LA & PFO

Figure 5: LA & Vitamin E
Figure III: Histopathology of Kidney

Figure 1: Normal

Figure 2: LA control

Figure 3: LA&PFG

Figure 4: LA&PFO

Figure 5: LA&Vitamin E
Figure I. Invitro study of different concentration of lead acetate induced hemolysis of RBC in normal saline

Test tube 1- 15ml of 5% RBC suspension and 0.5ml normal saline
Test tube 2- 15ml of 5% RBC suspension and 0.5ml of 0.2mg% lead acetate solution
Test tube 3- 15ml of 5% RBC suspension and 0.5ml of 0.4mg% lead acetate solution
Test tube 4- 15ml of 5% RBC suspension and 0.5ml of 0.6mg% lead acetate solution
Test tube 5- 15ml of 5% RBC suspension and 0.5ml of 0.8mg% lead acetate solution
Test tube 6- 15ml of 5% RBC suspension and 0.5ml of 1mg% lead acetate solution
Figure 2
1a. In vitro study of water soluble PFG oil obtained after incubation at stomach pH

Figure 3
1b. In vitro study of water insoluble PFG oil obtained after incubation at stomach pH

Figure 4
2a. In vitro study of water soluble fraction of PFG oil obtained after incubation at intestinal pH

Figure 5
2b. In vitro study of water insoluble fraction of PFG oil obtained after incubation at intestinal pH
FIGURE 6
3a) In vitro study of water soluble NPFG oil obtained after incubation at stomach pH

FIGURE 7
3b) In vitro study of water insoluble NPFG oil obtained after incubation at stomach pH

FIGURE 8
4a) In vitro study of water soluble fraction of NPFG oil obtained after incubation at intestinal pH

FIGURE 9
4b) In vitro study of water insoluble fraction of NPFG oil obtained after incubation at intestinal pH
5a). In vitro study of water soluble PFO oil obtained after incubation at stomach pH

5b) In vitro study of water insoluble PFO oil obtained after incubation at stomach pH

6a). In vitro study of water soluble fraction of PFO oil obtained after incubation at intestinal pH (8)

6b). In vitro study of water insoluble fraction of PFO oil obtained after incubation at intestinal pH
FIGURE 14
7a). In vitro study of water soluble NPFO oil obtained after incubation at stomach pH

FIGURE 15
7b). In vitro study of water insoluble NPFO oil obtained after incubation at stomach pH

FIGURE 16
8a) In vitro study of water soluble fraction of NPFO oil obtained after incubation at intestinal pH

FIGURE 17
8b). In vitro study of water insoluble fraction of NPFO oil obtained after incubation at intestinal pH