List of figures

1.1 A schematic representation of p53 under different cellular stress and playing a important role in different regulatory pathways. 2
1.2 p53 triggers apoptosis. ... 4
1.3 (A) Different phases of cell: Transition of normal cell to stressed, cancerous, apoptotic cell. (B) Cytotoxic therapy: Adapted from Cheok, et al [27]. ... 8
1.4 The p53-Mdm2 autoregulatory feedback loop and Nutlin-3 in Mdm2 and inhibits the interaction of Mdm2 with p53 [42]. 11
1.5 (A) p53 regulatory pathways and Nutlin-3a therapy [52]. (B) Nutlin concentration can drive the p53 dynamic to various oscillating states namely: stabilized or steady state, first damped oscillating state, sustain oscillation state, second damped oscillation state and apoptotic state. ... 14
3.1 The schematic presentation of biochemical network of p53 and Wnt modules and their cross talk via Gsk3. 64
3.2 The dynamics of p53 and Gsk3 for different values of k_{35} i.e. 0.06, 0.18, 0.24, 0.6 and 1.2 for fixed value of $k_{22} = 0.02$. The right hand panels are the two dimensional plots the p53 and Gsk3 with Nutlin for the same set of parameter values showing different state behaviours. ... 72
3.3 The dynamics of Axin2 and β-catenin for different values of k_{35} i.e.
0.06, 0.18, 0.24, 0.6 and 1.2 for fixed value of $k_{22} = 0.02$. The right hand panels are the two dimensional plots the Axin2 and β-catenin with Nutlin for the same set of parameter values showing different state behaviours. 74

3.4 The dynamics of Plots of p53, Axin2 and β-catenin as a function of time for k_{22} values 0.0002, 0.0003, 0.01, 0.025 and 0.08, for fixed values of k_{35}. The upper right panels shows the two dimensional plots of p53 and β-catenin with Axin2 for same set of k_{22} and k_{35} parameter values. 75

3.5 The amplitudes of Axin2 (x_{1}^{A}), β-catenin (x_{3}^{A}), Gsk3 (x_{6}^{A}) and p53(x_{7}^{A}) as a function of k_{35} for various k_{39} values 0.030, 0.035, 0.040, 0.045 and 0.050 (upper four panels). The lower four panels are the maxima of Axin2 (x_{1}^{M}), β-catenin (x_{3}^{M}), Gsk3 (x_{6}^{M}) and p53 (x_{7}^{M}) for the set of parameter values. 79

3.6 The amplitudes of Axin2 (x_{1}^{A}), β-catenin (x_{3}^{A}), Gsk3 (x_{6}^{A}) and p53(x_{7}^{A}) as a function of k_{22} for various k_{39} values 0.030, 0.035, 0.040, 0.045 and 0.050 (upper four panels). The lower four panels are the maxima of Axin2 (x_{1}^{M}), β-catenin (x_{3}^{M}), Gsk3 (x_{6}^{M}) and p53 (x_{7}^{M}) for the set of parameter values. 81

4.1 The schematic diagram of SMAR1 driven p53 regulatory network 88

4.2 Workflow of the methods we implemented in the analysis of the model system 90
4.3 The diverse dynamical states of p53 dynamics driven by SMAR1.
(A) Time series dynamical states of p53. (B) Permutation entropy spectrum of three states. (C) Multifractal analysis: plot of Hurst exponent(H_q), multifractal generalized dimension (D_q) as a function of parameter q. (D) Amplitudes of p53(A_{p53} of the dynamical states as a function of k_{SMAR1}). (E) Phase diagram in the parameter space (k_{HDAC1}, k_{SMAR1}^c and (k_{P300}, k_{SMAR1}^c) and their respective average amplitudes. (F) Network constructed from the dynamical states using visibility graph approach. (G) Topological properties of the networks corresponding to various dynamical states: The 1st, 2nd, 3rd, 4th, 5th and 6th columns are for $P^{p53}(k)$ vs k, $C^{p53}(k)$ vs k, $C_N^{p53}(k)$ vs k, $C_B^{p53}(k)$ vs k, $C_C^{p53}(k)$ vs k, $C_E^{p53}(k)$ vs k respectively.

4.4 (A) The diverse dynamical states of Mdm2 dynamics driven by SMAR1. (A) Time series dynamical states of Mdm2. (B) Permutation entropy spectrum of three states. (C) Multifractal analysis: plot of Hurst exponent(H_q), multifractal generalized dimension (D_q) as a function of parameter q. (D) Amplitudes of p53(A_{Mdm2} of the dynamical states as a function of k_{SMAR1}). (E) Network constructed from the dynamical states using visibility graph approach. (G) Topological properties of the networks corresponding to various dynamical states: The 1st, 2nd, 3rd, 4th, 5th and 6th columns are for $P^{Mdm2}(k)$ vs k, $C^{Mdm2}(k)$ vs k, $C_N^{Mdm2}(k)$ vs k, $C_B^{Mdm2}(k)$ vs k, $C_C^{Mdm2}(k)$ vs k, $C_E^{Mdm2}(k)$ vs k respectively.
4.5 Phase diagram of dynamical states driven by SMAR1. (A) Plot of A_{p53} as a functions of k_{HDAC1} driven by SMAR1(k_{SMAR1}) (B) Regulation of apoptosis: Phase diagram in the parameter space (k_{SMAR1}, k_{HDAC1}) showing normal, stress and apoptosis with interaction mechanisms(indicating by arrows) (C) SMAR1 driven phase diagram: Plot of Δk_{HDAC1}^S as a function of k_{SMAR1}.

5.1 The schematic diagram of Notch-Wnt-p53 cross-talk model.

5.2 Cis-inhibition and Trans-activation in Notch-Wnt-p53 cross-talk model.

5.3 Dynamical states of stress p53 driven by Nutlin, and stress propagation: (A) Dynamical states of p53 for different k_{35} values. (B, I, M) Complexity measurement characterized by calculated permutation entropy S_{p53}, S_{Notch}, S_{Axin2} values of the corresponding dynamical states of p53, Notch, Axin2 respectively. (C, J, N) Multifractal calculations of the dynamical states of p53, Notch, Axin2 respectively: plots of F_s vs s, H_q vs q and D_q vs q, (D) A_{p53} as a function of k_{35} for different values of k_{39};..., (E) Phase diagram in the parameter space (k_{39}, k_{35}^c), where k_{35}^c are the values of k_{35} cut by horizontal line, and Δk_{35} is the range of k_{35} occupied by sustain oscillation, F. Schematic diagram of stress signal propagation. (G, K, O) Topological properties of networks constructed from the time series of corresponding dynamical states of p53, Notch, Axin2 respectively: $P(k)$, $C(k)$, $C_n(k)$, $C_B(k)$, $C_C(k)$ and $C_E(k)$ as a function of degree k. (H, L) Propagated signal received by Notch and Axin2 respectively, and corresponding dynamical states.
5.4 Dynamical states of stress p53 driven by Axin2, and stress propagation: (A) Dynamical states of p53 for different k_{22} values, (B) Permutation entropy S_{p53} values of the corresponding dynamical states, (C,J) Multifractal calculations of p53 and Axin2: plots of F_s vs s, $H_{q_{p53}}^s$ vs q and D_q vs q. (D) A_{p53} as a function of k_{22} for various values of k_{39}...., (E) Phase diagram in the parameter space (k_{39}, k_{22}), and Δk_{22} is the range of k_{22} occupied by sustain oscillation, (F) Schematic diagram of stress signal propagation, (G, K) Topological properties of networks of corresponding dynamical states: $P(k)$, $C(k)$, $C_n(k)$, $C_B(k)$, $C_C(k)$ and $C_E(k)$ as a function of degree k, (H) Propagated signal received by Notch and corresponding dynamical states, (I) Permutation entropy (H_{Notch}) calculations. 133

5.5 Cross-talk of pathways and properties: (A) Dynamics of stress p53 triggered by Nutlin (red), Nutlin plus Wnt (blue), and Nutlin plus Wnt plus Notch (maroon), (B) permutation entropy measures of these cross-talks, (C) corresponding multifractal measures: F_s vs s, H_q vs q, and D_q vs q plots, (D) A_{p53} corresponding to the cross-talks, (E) topological properties of the corresponding networks: $P(k)$, $C(k)$, $C_n(k)$, $C_B(k)$, $C_C(k)$ and $C_E(k)$ as a function of degree k. 137

6.1 A schematic diagram of p53–Mdm2-miR–125b network model. 143

6.2 (A) Dynamical states of p53 and their temporal behaviours when ROS act as a stress inducer whereas miR-125b creation rate ($k_{\text{miR–125b}} = 0$) is kept fixed. (B) The dynamical states of p53 driven by miR-125b stress inducer when ROS creation rate $k_{\text{ROS}} = 0.00005$ is kept fixed. 150
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3</td>
<td>A comparative plot for the amplitude versus k_{ROS} in first panel and $k_{miR−125b}$ in second panel. Similarly, comparative plot for the time period variation versus k_{ROS} in third panel and $k_{miR−125b}$ in fourth panel.</td>
</tr>
<tr>
<td>6.4</td>
<td>Different regimes p53 dynamical states driven by ROS, (plots of transition time T_i of the dynamical states as a function of k_{ROS}), and miR-125b (T_i as a function of $k_{miR−125b}$).</td>
</tr>
<tr>
<td>6.5</td>
<td>Multifractal behaviour of p53 of various dynamical states: (A) Plots of generalized fractal dimension D_q and Hurst exponent (H_q) of p53 dynamical states driven by ROS as a function of q, (B) Behaviours of D^{p53}_q and H^{p53}_q with respect to q of the p53 dynamical states induced by miR-125b.</td>
</tr>
<tr>
<td>6.6</td>
<td>Topological properties of the networks constructed time series of dynamical states of p53 via visibility graph algorithm.</td>
</tr>
<tr>
<td>7.1</td>
<td>Schematic diagram of the workflow of the methods implemented in the study of ovarian cancer network.</td>
</tr>
<tr>
<td>7.2</td>
<td>Identification of fundamental key regulators of ovarian cancer network. (A) Organization of the modules/sub-modules of the network. (B) Plots of Q_N and LCP-corr as a function of network level. (C) Characterization of seventy leading hubs of the network by degree (k) distribution and identification of fundamental key regulators. Color codes are popularities of the leading hubs.</td>
</tr>
<tr>
<td>7.3</td>
<td>Tracing of fundamental key regulators of the network through different levels of the network.</td>
</tr>
</tbody>
</table>
7.4 Topological properties of the ovarian cancer network. (A) The behaviours of degree distributions ($P(k)$), clustering co-efficient ($C(k)$), neighborhood connectivity ($C_N(k)$), betweenness ($C_B(k)$), closeness ($C_C(k)$) and eigenvector ($C_E(k)$) measurements as a function of degree k for original and five FKRs knock-out network at different levels of organization. (B) The changes in the exponents of the six topological parameters due to FKRs knock-out experiment. (C) Energy distribution in the network quantified by Hamiltonian calculation as a function of network levels. (D) Changes in the network modules/sub-modules due to five FKRs knock-out experiment. The dotted modules/sub-modules are the break-down modules/sub-modules.

7.5 Network/modules/sub-modules at different network levels which accommodate leading hubs and fundamental key regulators. The probability distributions of the FKRs as a function of level.

7.6 Properties of AKT1. (A) The tracing of AKT1 in network/modules/sub-modules at various network levels. (B) The variation of LCL as a function of CN for different levels. (C) Organization of five FKRs with Tp53. (D) Directional tracing of AKT1 at various network levels. Rich-club parameter as a function of k. P_H and P_{LCP} as a function of level.

7.7 LCP correlation as a function of CN for different modules/sub-modules and their distribution.

8.1 Schematic diagram of workflow of the methodology implemented in this work.
8.2 Plots of the degree and centrality based identification of first top twenty genes in each measurement. The percentage of common overlapping of the identified genes by the four measurements.

8.3 Topological properties of the breast cancer network. The lines are fitted lines with power laws in the data sets.

8.4 Sub-networks constructed corresponding to most frequently repeated non-breast cancer genes (A, B, C, D, E) and their compactness characterized by two dimensional plots between \sqrt{LCL} versus CN (F). Plots of P_H and P_{LCP} for frequently repeated five non-breast cancer genes (G).

9.1 Showing the degree distribution, clustering co-efficient, Avg neighborhood connectivity i.e. $P(k)$, $C(k)$ and C_n vs. k graph respectively, After Knock out experiment at 0, 10, 20, 30, 40, 50, 100 nodes removal and it is also fitted to the power law with exponent with γ, α, β falling in range of Characteristic hierarchical networks $(0 \leq \gamma \leq 2)$, $(\alpha \sim 1)$ and $(\beta \leq 1)$ respectively; Showing the betweenness centrality, closeness centrality and eigenvector Centrality i.e. C_b, C_c and C_e vs. k graph respectively, After Knock out experiment at 0, 10, 20, 30, 40, 50, 100 nodes removal and it is also fitted to the power law with exponent ϵ, δ and μ in order.

9.2 Paths of fundamental key regulators from complete network to motif through various modules/sub-modules at various level of organization. The probability distribution of the seven fundamental key regulators as a function of level of organization.

9.3 The structures of modules/sub-modules through which the first ten leading hubs passed through.
9.4 The modular path of p53 from complete network to motif with the structures of modules/sub-modules at various levels in which p53 is accommodated. (A) The plots of LCP-correlation as a function of CN for each modules/submodules (plots corresponding to each module/sub-module of the network) of p53 path. (B) The plots of P_H and P_{LCP} as a function of level of organization. 220

9.5 Compactness of breast cancer network: (A) LCP-correlation calculation as a function of CN for second and third level modules when zero, five and fifty leading hubs are removed. (B) Representation of modules/sub-modules based on the values of LCP-correlation values: modules with red color are for $LCP - corr \geq 0.8$, and green color modules are for $LCP - corr < 0.8$. 221