Chapter 2

L-Duality of a Finsler space with certain (α, β)-metrics

The geometry of higher order Finsler spaces were investigated in ([4], [49], [59]). The study of higher order Lagrange and Hamilton spaces were discussed in ([57], [58], [60]). Many fundamental problems concerning the L-duality and classes of Finsler spaces were studied in ([34], [72]). Various geometers have studied the L-duals of Randers, Kropina and Matsumoto space in ([33], [34], [45]). In this chapter, we have obtained the L-dual of a fundamental (α, β)-metric $\frac{(\alpha+\beta)^2}{\alpha}$.

2.1 Introduction

The concept of L-duality between Lagrange and Finsler space was initiated by R. Miron [56] in 1987. Since then, many Finsler geometers have studied this topic.

One of the remarkable results obtained are the concrete L-duals of Randers and Kropina metrics ([33], [34]). The importance of L-duality is by far not limited to computing the dual of some Finsler fundamental func-
tions but there are so many problems which have been solved by taking the \mathcal{L}-duals of Finsler spaces. The \mathcal{L}-duality between Finsler and Cartan spaces is used to theory of the geometry of a Cartan space.

2.2 The Legendre transformation

A Finsler space with the basic function:

$$F(x, y) = \frac{(\alpha(x, y) + \beta(x, y))^2}{\alpha(x, y)}$$

(2.2.1)

is called a Finsler space with quadratic metric.

Definition 2.2.1. "[4]. A Cartan space C^n is a pair (M, H) which consists of a real n-dimensional C^∞-manifold M and a Hamiltonian function $H : T^*M \setminus \{0\} \to \mathbb{R}$, where (T^*M, π^*, M) is the cotangent bundle of M such that $H(x, p)$ has the following properties:

1. It is two homogeneous with respect to p_i $(i, j, k, \ldots = 1, 2, \ldots, n)$.
2. The tensor field $g^{ij}(x, p) = \frac{1}{2} \frac{\partial^2 H}{\partial p_i \partial p_j}$ is nondegenerate".

Let us denote an n-dimensional Cartan space with the fundamental function $K(x, p)$ by $C^n = (M, K)$. One can also describe Cartan spaces with the metric functions of the forms given below:

$$K(x, p) = \sqrt{a^{ij}(x)p_ip_j + b^i(x)p_i}$$

and

$$K(x, p) = \frac{a^{ij}p_ip_j}{b^i(x)p_i}$$
and call these spaces Randers and Kropina spaces respectively on the cotangent bundle T^*M.

Definition 2.2.2. “[4]. A regular Lagrangian $L(x, y)$ on a domain $D \subset TM$ is a real smooth function $L : D \to \mathbb{R}$ and a regular Hamiltonian $H(x, p)$ on a domain $D^* \subset T^*M$ is a real smooth function $H : D^* \to \mathbb{R}$. Thus, the matrices with entries

$$g_{ab}(x, y) = \dot{\partial}_a \dot{\partial}_b L(x, y)$$

and

$$g^{ab}(x, p) = \dot{\partial}^a \dot{\partial}^b H(x, p)$$

are overall nondegenerate on D and D^* respectively.”

Example. (a) Each Finsler space F^n is a Lagrange manifold with $L = \frac{1}{2} F^2$.

(b) Each Cartan space $C^n = (M, \bar{F}(x, p))$ is a Hamilton manifold with $H = \frac{1}{2} \bar{F}^2$. (Here \bar{F} is positively one-homogeneous in p_i and the tensor $\bar{g}^{ab} = \frac{1}{2} \bar{\partial}^a \bar{\partial}^b \bar{F}^2$ is nondegenerate).

(c) (M, L) and (M, H) with

$$L(x, y) = \frac{1}{2} a_{ij}(x)y^i y^j + b_i(x) y^i + c(x)$$

and

$$H(x, p) = \frac{1}{2} \bar{a}^{ij}(x)p_ip_j + \bar{b}^i(x)p_i + \bar{c}(x)$$

are Lagrange and Hamilton manifolds respectively. (Here $a_{ij}(x)$, \bar{a}^{ij} are the fundamental tensors of Riemannian manifold, b_i are components of
covector field, \tilde{b}^i are the components of a vector field, C and \tilde{C} are the smooth functions on M).

Let $L(x, y)$ be a regular Lagrangian on a domain $D \subset TM$ and $H(x, p)$ be a regular Hamiltonian on a domain $D^* \subset T^*M$. If $L \in F(D)$ is a differential map, we can describe the fiber derivative of L, locally defined by the diffeomorphism between the open set $U \subset D$ and $U^* \subset D^*$

$$\psi(x, y) = (x^i, \partial_a L(x, y)),$$

which will be called the Legendre transformation.

It is smoothly identified that L is a regular Lagrangian if and only if ψ is a local diffeomorphism.

In the identical aspect if $H \in F(D^*)$, the fiber derivative is defined locally by

$$\varphi(x, y) = (x^i, \partial^a H(x, y)),$$

which is a local diffeomorphism if and only if H is regular.

Let us describe a regular Lagrangian L. Next, ψ is a diffeomorphism between the open sets $U \subset D$ and $U^* \subset D^*$. We can describe in this case the function:

$$H : U^* \to R, \ H(x, y) = p_a y^a - L(x, y), \quad (2.2.2)$$

where $y = (y^a)$ is the solution of the equations $y_a = \partial_a L(x, y)$.

Also, if H is a regular Hamiltonian on M, ψ is a diffeomorphism between respective open sets $U^* \subset D^* \subset U \subset D$, we can describe the function

$$L : U \to R, \ L(x, y) = p_a y^a - H(x, p), \quad (2.2.3)$$
CHAPTER 2. L-DUALITY OF A FINSLER SPACE WITH CERTAIN \((\alpha, \beta)\)-METRICS

\[y = (y_a) \text{ is the solution of the equations} \]

\[y^a = \dot{y}^a H(x, p). \]

The Hamiltonian given by (2.2.2) is the Legendre transformation of the Lagrangian \(L \) and the Lagrangian written in (2.2.3) is said to be the Legendre transformation of the Hamiltonian \(H \).

In case, \((M, K)\) is a Cartan space, then \((M, H)\) is a Hamilton manifold ([58], [61]), where \(H(x, p) = \frac{1}{2}K^2(x, p) \) is 2-homogenous on a domain of \(T^*M \). So we get the following transformation of \(H \) on \(U \):

\[L(x, y) = p_ay^a - H(x, p) = H(x, p). \quad (2.2.4) \]

Theorem 2.2.1. [61] The scalar field given by (2.2.4) is a positively 2-homogeneous regular Lagrangian on \(U \).

Therefore, we get Finsler metric \(F \) of \(U \), so that

\[L = \frac{1}{2}F^2. \]

Thus, for the Cartan space \((M, K)\) we always can locally combine a Finsler space \((M, F)\) which will be called the \(L \)-dual of a Cartan space \((M, C_{\mathcal{U}})\) vice versa, we can associate, locally, a Cartan space to every Finsler space which will be called the \(L \)-dual of a Finsler space \((M, F_{\mathcal{U}})\).
CHAPTER 2. L-DUALITY OF A FINSLER SPACE WITH CERTAIN (α, β)-METRICS

2.3 The L-dual of a special Finsler space with metric $\frac{(\alpha+\beta)^2}{\alpha}$

In this case, we put $\alpha^2 = y_i y^i$, $b^i = a^{ij} b_j$, $\beta = b_i y^i$, $\beta^* = b^i p_i$, $p^i = a^{ij} p_j$, $\alpha^{*2} = p_i p^i = a^{ij} p_i p_j$. we have $F = \frac{(\alpha+\beta)^2}{\alpha}$ and

\[p_i = \frac{1}{2} \dot{\partial}_i F^2 = F \left[\frac{\partial}{\partial y^i} \left(\frac{(\alpha + \beta)^2}{\alpha} \right) \right], \]

\[p_i = \frac{(\alpha + \beta)}{\alpha^2} \left[(1 - \frac{\beta}{\alpha}) y_i + 2ab_i \right] F. \quad (2.3.1) \]

Contracting (2.3.1) with p^i and b^i respectively, we get

\[\alpha^{*2} = \frac{(\alpha + \beta)}{\alpha^2} \left[(1 - \frac{\beta}{\alpha}) F^2 + 2\alpha \beta^* \right] F. \quad (2.3.2) \]

and

\[\beta^* = \frac{(\alpha + \beta)}{\alpha^2} \left[(1 - \frac{\beta}{\alpha}) \beta + 2ab^2 \right] F. \quad (2.3.3) \]

In [72], for a Finsler (α, β)-metric F on a Manifold M, one constructs a positive function $\phi = \phi(s)$ on $(-b_0; b_0)$ with $\phi(0) = 1$ and $F = \alpha \phi(s)$, $s = \frac{\beta}{\alpha}$, where $\alpha = \sqrt{a_{ij} y^i y^j}$ and $\beta = b_i y^i$ with $||\beta||_x < b_0, \forall x \in M$.

The function ϕ satisfies $\phi(s) - s \phi'(s) + (b^2 - s^2) \phi''(s) > 0, (|s| \leq b_0)$. This metric is an (α, β)-metric with $\phi = (1 + s)^2$.

Using Shen’s notation [77], $s = \frac{\beta}{\alpha}$ in (2.3.2) and (2.3.3), we get

\[\alpha^{*2} = \left[(1 - s^2)(1 + s)^2 F + 2(1 + s)\beta^* \right] F; \quad (2.3.4) \]
and
\[\beta^* = \left[(1 - s^2)s + 2(1 + s)b^2\right]F, \quad (2.3.5) \]

Putting \(1 + s = t\), i.e, \(s = (t - 1)\) in equations (2.3.4) and (2.3.5), we get
\[\alpha^{*2} = t[(2 - t)F + 2\beta^*]F, \quad (2.3.6) \]

and
\[\beta^* = t[(2 - t)(t - 1) + 2b^2]F. \quad (2.3.7) \]

We consider two cases:
(1) \(b^2 = 1\).
(2) \(b^2 \neq 1\).

Case 1. For \(b^2 = 1\) from (2.3.7), we get
\[\beta^* = t[(2 - t)(t - 1) + 2]F, \]

or
\[F = \frac{\beta^*}{t^2(3 - t)}. \quad (2.3.8) \]

and by substitution of \(F\) in (2.3.6), after some computations, we get a cubic equation
\[t^3 - 6t^2 + 3t(3 + k) - 8k = 0, \]

where
\[k = \frac{\beta^{*2}}{\alpha^{*2}}. \]
CHAPTER 2. \(L\)-DUALITY OF A FINSLER SPACE WITH CERTAIN \((\alpha, \beta)\)-METRICS

Using Mathematica for solving the above cubic equation, we get following roots of the above equation

\[
t = 2 - \frac{-9 + 9k}{9(-1 + k + \sqrt{k - 2k^2 + k^3})^{\frac{1}{3}}} + (-1 + k + \sqrt{k - 2k^2 + k^3})^{\frac{1}{3}},
\]

\[
t = 2 + \frac{(1 \pm i\sqrt{3})(-9 + 9k)}{18(-1 + k + \sqrt{k - 2k^2 + k^3})^{\frac{1}{3}}} - \frac{1}{2}(1 \pm i\sqrt{3})(-1 + k + \sqrt{k - 2k^2 + k^3})^{\frac{1}{3}},
\]

As our Finsler fundamental function is real, the dual Hamilton function is also real. So we choose real root

\[
t = 2 - \frac{-9 + 9k}{9(-1 + k + \sqrt{k - 2k^2 + k^3})^{\frac{1}{3}}} + (-1 + k + \sqrt{k - 2k^2 + k^3})^{\frac{1}{3}},
\]

or

\[
t = 2 - \frac{l}{(l + m)^{\frac{1}{3}}} + (l + m)^{\frac{1}{3}}, \tag{2.3.9}
\]

where

\[
l = -1 + k = \frac{-\alpha^* + \beta^*}{\alpha^*}, m = \sqrt{k - 2k^2 + k^3} = \frac{\beta^*(\alpha^* - \beta^*)}{\alpha^3}. \tag{2.3.10}
\]

From (2.3.8) and (2.3.9), we get

\[
F = \frac{\beta^*}{\left(1 + \frac{l}{(l + m)^{\frac{1}{3}}} - (l + m)^{\frac{1}{3}}\right)\left(2 - \frac{l}{(l + m)^{\frac{1}{3}}} + (l + m)^{\frac{1}{3}}\right)^{\frac{1}{2}}},
\]

As we know that \(H(x, p) = \frac{1}{2}F^2\), hence we get

\[
H(x, p) = \frac{\beta^{*2}}{2\left(1 + \frac{l}{(l + m)^{\frac{1}{3}}} - (l + m)^{\frac{1}{3}}\right)^2\left(2 - \frac{l}{(l + m)^{\frac{1}{3}}} + (l + m)^{\frac{1}{3}}\right)^{\frac{1}{2}}}.
\]

\[
\tag{2.3.11}
\]

Banasthali Vidyapith, Banasthali - 304022.
Putting $\beta^* = b^i p_i$, in (2.3.11), we get

$$H(x, p) = \frac{(b^i p_i)^2}{2 \left(\frac{l}{(l+m)^{\frac{1}{2}}} - (l + m)^{\frac{1}{2}} \right)^2 \left(\frac{l}{(l+m)^{\frac{1}{2}}} + (l + m)^{\frac{1}{2}} \right)^4}.$$

Case 2. Next, we find $H(x, p)$ for $b^2 \neq 1$. From (2.3.7), we have

$$F = \frac{\beta^*}{t[(2-t)(t-1) + 2b^2]}.$$

(2.3.12)

Using (2.3.12) in (2.3.6), we get

$$t^4 - 6t^3 + [9 - 4(b^2 - 1) + 3k]t^2 + [12(b^2 - 1) - 8k]t + [4(b^2 - 1)^2 - 4k(b^2 - 1)] = 0$$

Using Mathematica for solving the above quartic equation, we get four real roots, given in the following equation

$$t = \left(\frac{3}{2} \pm \delta_i \right), \ (i = 1, 2)$$

(2.3.13)

where

$$\delta_1 = \frac{a_1}{2} + \frac{1}{2} \sqrt{a_2 - \frac{a_3}{4a_1}},$$

$$\delta_2 = \frac{a_1}{2} - \frac{1}{2} \sqrt{a_2 - \frac{a_3}{4a_1}},$$

$$a_1 = \sqrt{\left[-4 + 4b^2 - 3k + \frac{1}{3} b_1 + \frac{2 \sqrt{b_2}}{3(b_3 + \sqrt{b_4})} \right] + \frac{[b_3 + \sqrt{b_4}]^\frac{1}{2}}{3.2 \frac{1}{2} \frac{1}{2}}},$$

$$a_2 = \left[5 + 4b^2 + \frac{b_1}{3} - 3k - \frac{2 \sqrt{b_2}}{3(b_3 + \sqrt{b_4})} - \frac{[b_3 + \sqrt{b_4}]^\frac{1}{2}}{3.2 \frac{1}{2} \frac{1}{2}} \right],$$
\[a_3 = (216 - 32b_5 - 24b_1),\]
\[b_1 = (13 - 4b^2 + 3k),\]
\[b_2 = (1 + 16b^2 + 64b^4 - 18k - 72b^2k + 9k^2),\]
\[b_3 = (2 + 48b^2 + 384b^4 + 1024b^6 - 54k - 648b^2k - 1728b^4k + 270k^2 + 648b^2k^2 + 54k^3),\]
\[b_4 = (1728b^2k^2 + 25920b^4k^2 + 82944b^6k^2 - 110592b^8k^2 - 1728k^3 - 57024b^2k^3 - 114048b^4k^3 + 359424b^6k^3 + 31104k^4 - 15552b^2k^4 - 388800b^4k^4 + 46656k^5 + 139968b^2k^5),\]
\[b_5 = (-3 + 3b^2 - 2k).\]

As our Finsler fundamental function is real, the dual Hamilton function is also real. Putting the value of \(t\) in (2.3.12), we get

\[F = \frac{\beta^*}{\left(\frac{3}{2} \pm \delta_i\right) \left[\left(\frac{1}{2} \pm \delta_i\right)^2 + 2b^2\right]},\]

Hence \(H(x, p) = \frac{1}{2} F^2\) is obtained as

\[H(x, p) = \frac{\beta^{*2}}{2 \left(\frac{3}{2} \pm \delta_i\right)^2 \left[\left(\frac{1}{2} \pm \delta_i\right)^2 + 2b^2\right]^2},\] \hspace{1cm} (2.3.14)

Putting \(\beta^* = b^i p_i\), in (2.3.14), we get

\[H(x, p) = \frac{(b^i p_i)^2}{2 \left(\frac{3}{2} \pm \delta_i\right)^2 \left[\left(\frac{1}{2} \pm \delta_i\right)^2 + 2b^2\right]^2},\] \hspace{1cm} (2.3.15)

Hence, we have the following:

Theorem 2.3.1. Let \((M, F = (\alpha + \beta)^2/\alpha)\) be a special Finsler space, where
\(\alpha^2 = a(y, y) = a_{ij}(x)g^i y^j \) is Riemannian metric and \(\beta = b_i(x)g^i \) is a 1-form on \(TM \setminus \{0\} \), where \(b^2 \) is the Riemannian length of \(b \). Then, the \(\mathcal{L} \)-dual of \((M, F = (\alpha + \beta)^2 / \alpha) \) is the space having the fundamental function on \(T^*M \):

1. If \(b^2 = 1 \), the \(\mathcal{L} \)-dual of \((M, F) \) is the space on \(T^*M \) having the elementary function:

\[
H(x, p) = \frac{(b^i p_i)^2}{2 \left(1 + \frac{l}{(l+m)^{\frac{3}{2}}} - (l + m)^{\frac{1}{2}} \right)^2 \left(2 - \frac{l}{(l+m)^{\frac{3}{2}}} + (l + m)^{\frac{1}{2}} \right)^4},
\]

(2.3.16)

where

\[
l = -1 + k = \frac{-\alpha^*^2 + \beta^*^2}{\alpha^*^2}, m = \sqrt{k - 2k^2 + k^3} = \frac{\beta^*(\alpha^*^2 - \beta^*^2)}{\alpha^*^3}.
\]

2. If \(b^2 \neq 1 \), the \(\mathcal{L} \)-dual of \((M, F) \) is the space on \(T^*M \) having the elementary function:

\[
H(x, p) = \frac{(b^i p_i)^2}{2 \left(\frac{3}{2} \pm \delta_1 \right)^2 \left[\frac{1}{2} \pm \delta_1 \right]^2 + 2b^2},
\]

(2.3.17)

where

\[
\delta_1 = \frac{a_1}{2} + \frac{1}{2} \sqrt{a_2 - \frac{a_3}{4a_1}}, \quad \delta_2 = \frac{a_1}{2} - \frac{1}{2} \sqrt{a_2 - \frac{a_3}{4a_1}},
\]

\[
a_1 = \sqrt{\left[-4 + 4b^2 - 3k + \frac{1}{3} \frac{b_1}{b_1} + \frac{2\frac{k}{b_2}}{3(b_3 + \sqrt{b_1})^{\frac{3}{2}}} + \frac{b_3 + \sqrt{b_1}}{(3.2\frac{1}{2})} \right]},
\]

\(Banasthali Vidyapith, Banasthali - 304022. \)
\[a_2 = \left[5 + 4b^2 + \frac{b_1}{3} - 3k - \frac{2^\frac{1}{2}b_2}{3(b_3 + \sqrt{b_4})^\frac{1}{2}} - \frac{[b_3 + \sqrt{b_4}]^\frac{1}{3}}{(3.2^\frac{1}{2})} \right], \]

\[a_3 = (216 - 32b_5 - 24b_1), \]

\[b_1 = (13 - 4b^2 + 3k), \]

\[b_2 = (1 + 16b^2 + 64b^4 - 18k - 72b^2k + 9k^2), \]

\[b_3 = (2 + 48b^2 + 384b^4 + 1024b^6 - 54k - 648b^2k - 1728b^4k + 270k^2 \]
\[+ 648b^2k^2 + 54k^3), \]

\[b_4 = (1728b^2k^2 + 25920b^4k^2 + 82944b^6k^2 - 110592b^8k^2 - 1728k^3 \]
\[- 57024b^2k^3 - 114048b^4k^3 + 359424b^6k^3 + 31104k^4 - 15552b^2k^4 \]
\[- 388800b^4k^4 + 46656k^5 + 139968b^2k^5), \]

\[b_5 = (-3 + 3b^2 - 2k). \]