Acknowledgement

“When we do the best that we can, we never know what miracle is wrought in our life or in the life of others.”

Hellen Keller.

I think the emotions of Hellen Keller are true up to a great extent because to make a play successful on the stage, a lot of work is done behind the curtains by many people. The most pleasurable aspect of writing a thesis is that it provides the opportunity to express most heartfelt gratitude to all the persons who have been sources of encouragement and enlightenment. The existence of my research journey wouldn’t have come to an end if my near and dear ones would not have supported me during, the tough journey of its completion.

First of all, I want to thank my guide Dr. Gauree Shanker, Associate Professor, Centre for Mathematics and Statistics, School of Basic and Applied Sciences, Central University of Punjab, Bathinda for his consistent motivation, evaluation, constant support and encouragement and lively discussions throughout the completion of this research work. He has been very cooperative and continuously suggested improvements and modification. I am indebted to him for his guidance and patience throughout my work, without his guidance this thesis would not have seen the light of the day.

I pay my heartiest gratitude to Prof. Aditya Shastri Vice-Chancellor, Banasthali Vidyapith, Rajasthan, Prof. G. N. Purohit, Dean AIM & ACT, Banasthali Vidyapith, Rajasthan and Prof. Sarla Pareek, Head, Department of Mathematics and Statistics, Banasthali Vidyapith, Rajasthan, who
whole heartedly supported me in carrying out my work smoothly ever since the date of my joining Banasthali Vidyapith as a Ph.D Scholar.

I would like to express my thanks to all the staff members of AIM & ACT. I also thank to authors of research papers, books and editors of several journals, which I have consulted during my research work.

My sincere & heartily regards goes to my father Mr. Krishan Singh and my mother Mrs. Santosh who very precisely helped and assisted in giving this research fine shape of recognizable work at end from the initial Mass of Possibilities. I would not be where I am today without their help, love and encouragement and I owe my success to them.

I am grateful to my family, who always taught me “Never bend your head, hold it high, look the world straight in the eye.” never let me even thinking of putting down my foot to not leave this in between.

Last but not least, I wish to extend my heartiest thanks to my best friend Miss Vijeta Singh for her cooperation and moral support throughout my research work. She has always given me positivity. She is not just a friend to me, she is a source of inspiration.

The chain of my gratitude would be definitely incomplete if I forget to thank the almighty God, the premier mover.

I dedicate this thesis to my Father.

Deepti
(Research Scholar)
Banasthali Vidyapith
Preface

This thesis contains six chapters beginning with the introduction which deals with the literature review and the methods which have been used as tools in this thesis.

In Chapter 2, the L-dual of a Finsler space with special (α, β)-metric is obtained. The importance of L-duality is by far not limited to computing the dual of some Finsler fundamental functions but there are so many problems which have been solved by taking the L-duals of Finsler spaces.

In Chapter 3, a study is done on the nonholonomic Finsler frame for a class of Generalized Lagrange spaces with (α, β)-metric and then the two Finsler deformations for the afore said metrics are obtained. Consequently, the nonholonomic Finsler frame for afore said Finsler space is obtained.

In Chapter 4, the conditions for a Douglas space of second kind with (α, β)-metric to be a Douglas space of second kind under conformal transformation are discussed. Further, it is shown that Douglas space of second kind with Matsumoto and generalized Kropina metric is a Douglas space of second kind under conformal transformation.

In Chapter 5, the conditions for a Finsler space F^n with an (α, β)-metric to be a weakly-Berwald space are discussed. In particular, the conditions for F^n with second approximate Matsumoto metric to be weakly-Berwald space are obtained.

In Chapter 6, a two-dimensional Landsberg space with certain (α, β)-metrics satisfying some conditions is discussed. First the conditions for a
\(F^n \) with a special \((\alpha, \beta)\)-metric to be a Berwald space are obtained and then the difference vector and the main scalar of \(F^2 \) with the aforesaid metrics are obtained.
Contents

Declaration ... ii
Certificate ... iii
Acknowledgement .. iv
Preface .. vi

1 A Brief Introduction to Finsler Geometry 2

1.1 Introduction .. 2

1.2 Preliminaries ... 11

1.2.1 Tangent space 11
1.2.2 Tangent Bundle 13
1.2.3 Indicatrix ... 13
1.2.4 Minkowski space 14

1.3 Finsler Connections 14

1.3.1 Cartan’s Connection 16
1.3.2 Rund’s Connection 17
1.3.3 Berwald’s Connection 17
1.3.4 Hashiguchi’s Connection 18

1.4 Special Finsler Spaces 18

1.4.1 Riemannian space 19
1.4.2 Locally Minkowskian space 19
1.4.3 Berwald space 20
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4.4</td>
<td>Landsberg space</td>
<td>20</td>
</tr>
<tr>
<td>1.4.5</td>
<td>Douglas Space</td>
<td>21</td>
</tr>
<tr>
<td>1.4.6</td>
<td>Finsler Space with ((\alpha, \beta))-metric</td>
<td>21</td>
</tr>
<tr>
<td>1.5</td>
<td>Cartan space</td>
<td>24</td>
</tr>
<tr>
<td>2</td>
<td>(\mathcal{L})-Duality of a Finsler space with certain ((\alpha, \beta))-metrics</td>
<td>25</td>
</tr>
<tr>
<td>2.1</td>
<td>Introduction</td>
<td>25</td>
</tr>
<tr>
<td>2.2</td>
<td>The Legendre transformation</td>
<td>26</td>
</tr>
<tr>
<td>2.3</td>
<td>The (\mathcal{L})-dual of a special Finsler space with metric (\frac{(\alpha+\beta)^2}{\alpha})</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>Nonholonomic Frames for Finsler spaces with certain ((\alpha, \beta))-metrics</td>
<td>37</td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>37</td>
</tr>
<tr>
<td>3.2</td>
<td>Nonholonomic frames for Beil-metric</td>
<td>40</td>
</tr>
<tr>
<td>3.3</td>
<td>Nonholonomic frames for Finsler spaces with ((\alpha, \beta))-metrics</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>3.3.1 Nonholonomic frames for Finsler spaces with certain ((\alpha, \beta))-metrics</td>
<td>46</td>
</tr>
<tr>
<td>4</td>
<td>Conformal Change of a Douglas space of second kind with certain ((\alpha, \beta))-metrics</td>
<td>49</td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>49</td>
</tr>
<tr>
<td>4.2</td>
<td>Preliminaries</td>
<td>50</td>
</tr>
<tr>
<td>4.3</td>
<td>Douglas space of second kind with ((\alpha, \beta))-metric</td>
<td>52</td>
</tr>
<tr>
<td>4.4</td>
<td>Conformal change of Douglas space of second kind with ((\alpha, \beta))-metric</td>
<td>56</td>
</tr>
<tr>
<td>4.5</td>
<td>Conformal change of Douglas space of second kind with certain ((\alpha, \beta))-metrics</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>4.5.1 Conformal Change of Douglas space of second kind with Generalized Kropina metric</td>
<td>59</td>
</tr>
</tbody>
</table>
4.5.2 Conformal Change of Douglas space of second kind with Matsumoto metric

61

5 Weakly Berwald spaces with certain \((\alpha, \beta)\)-metrics

62

5.1 Introduction 62

5.2 Weakly-Berwald space with respect to \((\alpha, \beta)\)-metric 65

5.3 Finsler space with second approximate Matsumoto metric . 68

6 Landsberg spaces of dimension-two with certain \((\alpha, \beta)\)-metrics

79

6.1 Introduction 79

6.2 Preliminaries 80

6.3 Berwald Space 83

6.4 Two-dimensional Landsberg space 84

Bibliography

92

List of Publications

101

List of Papers Presented in Conferences

102